
Available online at www.sciencedirect.com
www.elsevier.com/locate/ijepes

Electrical Power and Energy Systems 30 (2008) 376–382
Power analysis of static VAr compensators

F.R. Quintela *, J.M.G. Arévalo, R.C. Redondo
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Abstract

Analysis of three-phase loads usually assume them to be three impedances in a star or triangle connection. This is the reason why
obtained results can only be considered valid for passive loads, strictly speaking. Analysis leading to the proposal of some static com-
pensators is usually performed in this way, which induces to believe that this compensators are only valid for passive loads. An analysis
procedure, which uses only powers to describe loads, is expounded in this paper. If applied to the analysis of static compensators, it
reveals unequivocally their usefulness with active and passive three-phase loads. Therefore, this method is more general and, as it will
be seen, easier.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It is usual to suppose three-phase loads exclusively
formed by impedances in a star or triangle connection
while studying them. For instance, a lot of textbooks do
this while deducing the active, reactive, and apparent
power’s formulas of balanced three-phase systems [1,2].
This deduction method assures the validity of the results
for passive loads, but it does not justify their validity for
active loads, strictly speaking.

Every three-phase passive load formed only by imped-
ances connected in any manner is equivalent to three
impedances in a star or triangle connection. Nevertheless,
if the load contains motors or generators it is necessary
to describe it by means of voltage or current sources along
with impedances. That is to say, the result is an active load,
which is not equivalent to a load formed just by three
impedances.
0142-0615/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Some solutions, which are obtained only for passive
loads, are also valid for active loads even though deduc-
tion procedures do not justify them. Their apparent limita-
tion is due exclusively to the deduction method. For this
reason it is important to use analysis methods that are
capable of clearly showing the scope of the solutions they
lead to. One of those procedures consists in using relations
between the powers of three-phase systems instead of
describing the loads by means of impedances. Three
advantages of this method are: (a) all variables involved
are external to the load, (b) there is no need for an
assumption concerning the internal connections of the
load, its constituting receptors, or whether it is a passive
or active load, thereby conferring great generality to the
results, and (c) operations tend to be easier than those
involving impedances [3].

Some procedures have been proposed to balance three-
wire three-phase loads, and to compensate the reactive
power they absorb, using static VAr compensators. Several
algorithms have been created to obtain the susceptances of
the static VAr compensator. Those algorithms derive from
methods deduced for passive loads consisting only of cer-
tain impedance connections [4–6]. They are deduced in this
paper from power relations, thus showing that the solution
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is unequivocally valid not only for passive but also for
active loads, whichever their internal connection might be.

2. Relation between active and reactive powers delivered by

each phase to a three-wire three-phase load

The relation between the active and reactive powers
delivered by each phase to a three-wire three-phase load
is the basis of the method shown here. Fig. 1 represents a
three-phase load connected to a three-phase line with bal-
anced voltages. If voltage V R is chosen as reference phasor
(Fig. 1), then V R ¼ V =0�, V S ¼ V =�120�, V T ¼ V =120�,
and

0 ¼ I�R þ I�S þ I�T ¼
P R þ jQR

V =0�
þ P S þ jQS

V =�120�
þ P T þ jQT

V =120�
ð1Þ

where I�R is the conjugate of IR, and P R þ jQR ¼ V RI�R is the
complex power delivered to the load through its R-phase.
The same applies to the rest of the phases. As
1=120� ¼ �1=2þ j

ffiffiffi
3
p

=2 and 1=�120� ¼ �1=2� j
ffiffiffi
3
p

=2,
from (1), two new equations of real numbers are obtained

2P R � P S �
ffiffiffi
3
p

QS � P T þ
ffiffiffi
3
p

QT ¼ 0

2QR � QS þ
ffiffiffi
3
p

P S � QT �
ffiffiffi
3
p

P T ¼ 0
ð2Þ

These are the relations between the powers delivered by
each phase looked for. Whichever the load connected to
a three-wire three-phase line with balanced voltages might
be, its powers must satisfy the relations given in (2). If

QR ¼ QS ¼ QT ð3Þ
one derives from (2) that

P R ¼ P S ¼ P T ð4Þ
and the system is balanced. That is to say, it suffices to
make the reactive powers delivered by the phases equal
to each other to attain a balanced three-wire three-phase
system. This is the basis of the method proposed in this pa-
per, and used to obtain the algorithms of the compensator
which balances any three-phase load: the method consists
on a compensator, constituted entirely by reactances,
which makes the reactive power delivered by the phases
equal to each other. Thus, if Q2 is the reactive power deliv-
ered to the set formed by the compensator and the load,
then each phase delivers Q = Q2/3. The active power deliv-
ered now by each phase is P, and the active power delivered
to the compensator–load group is 3P, which is also the ac-
Three-phase
load

IS P +jQS S

VS

IR P +jQR R

VR

IT P +jQT T

VT

N

_

_

_ _

_

_

Fig. 1. Power delivered to a three-wire three-phase load by each phase.
tive power delivered to the load, since no active power is
delivered to the compensator as it consists of reactances
only.

Thus, the new power factor is

cos u2 ¼
3Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3P Þ2 þ ð3QÞ2
q ¼ Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P 2 þ Q2
p ð5Þ

If Q2 = 0 is achieved, the power factor would be unity.

3. Reactive power delivered by each phase to a three-wire

purely-reactive load connected in triangle

Let the powers jQRS, jQST, and jQTR, which are
absorbed by the mono-phase reactive loads that constitute
the triangle in Fig. 2, be known. It is very useful for our
purposes to find the relation between those powers and
the complex powers delivered by each phase, which will
be designated by SR ¼ P R þ jQR, SS ¼ P S þ jQS, and
ST ¼ P T þ jQT.

Seeing that I�R ¼ I�1 � I�3, we have

I�R ¼
P R þ jQR

V =0�
¼ jQRSffiffiffi

3
p

V =30�
� jQTRffiffiffi

3
p

V =150�
¼ QRS � QTR

2
ffiffiffi
3
p

V

þ j

ffiffiffi
3
p
ðQRS þ QTRÞ

2
ffiffiffi
3
p

V
ð6Þ

Comparing the second and fourth members of this equa-
tion it is clear that

QR ¼
QRS þ QTR

2
ð7Þ

Similarly

QS ¼
QST þ QRS

2
ð8Þ

QT ¼
QTR þ QST

2
ð9Þ

The reactive powers delivered by each phase can be fixed at
any desired value using three appropriate reactances, as
shown in these last three equations. For instance, it is pos-
sible to achieve equal values for the three reactive powers
delivered by the phases to a load, thus balancing it. Fur-
thermore, all the reactive energy is compensated if those
three powers are set to zero. This result will be used in a
moment.
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Fig. 2. By choosing the appropriate value for QRS, QST, and QTR, the
reactive powers delivered by each phase, QR, QS, and QT, might be fixed at
any desired value.
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4. Reactance compensator

Fig. 3 shows an unbalanced three-wire three-phase load.
QR1, QS1 and QT1 are the reactive powers delivered by each
phase to the load; thus, the reactive power absorbed by the
load is Q1 = QR1 + QS1 + QT1 [7]. A reactance compensa-
tor is connected in a triangle configuration to balance
phase currents. In order to do it, it is enough to make
the reactive powers delivered by each phase to the compen-
sator–load group equal, as seen before. That is to say, if Q2

is the reactive power delivered to the compensator–load
group, each phase must deliver Q2/3 to it. Q2 can be any
arbitrary value.

The reactive powers of the compensator, QC
RS, QC

ST, and
QC

TR, which make the reactive power delivered by each
phase to the compensator–load group equal to Q2/3, will
be determined. The power delivered to the compensator–
load group by each phase is the sum of the power delivered
to the load by each phase and the power delivered to the
compensator. Taking into account (7)–(9), this power is

Q2

3
¼ QR1 þ

QC
RS þ QC

TR

2

Q2

3
¼ QS1 þ

QC
ST þ QC

RS

2

Q2

3
¼ QT1 þ

QC
TR þ QC

ST

2

ð10Þ

The values looked for are obtained from this set of
equations

QC
RS ¼

Q2

3
þ QT1 � QR1 � QS1

QC
ST ¼

Q2

3
þ QR1 � QS1 � QT1

QC
TR ¼

Q2

3
þ QS1 � QT1 � QR1

ð11Þ

These are the reactive power values of the compensator’s
reactances that balance the three-phase system. The reac-
tive power absorbed now is Q2. If the only purpose is to
balance the system without changing the value of the reac-
tive power delivered to the compensator–load group, then
we use Q2 = Q1 = QR1 + QS1 + QT1. But if this reactive
power, Q2, is intended to be zero, then the powers of the
reactances should be
jQST
C

RSjQC

TRjQC

Unbalanced
three- phase

load

R

S

T

QR1

QT1

QS1

Q /32

Q /32

Q /32

Fig. 3. This compensator, formed by reactances, balances the system.
Three varmeters measure QR1, QS1 and QT1, and allow to obtain which
power values the compensator’s reactances must absorb.
QC
RS ¼ QT1 � QR1 � QS1

QC
ST ¼ QR1 � QS1 � QT1

QC
TR ¼ QS1 � QT1 � QR1

ð12Þ

These are the values which balance the system and make
the power factor unity. Under this conditions the power
lost in the line is minimum.

The previous formulas constitute a very easy algorithm
to deduce the values of the reactances of the compensator.
The reactive powers delivered to the initial load by each
phase can be measured using three VAr meters connected
as shown in Fig. 3 [7].

Knowing that
ffiffiffi
3
p

V is the effective value of the voltage
between the phases of the load, the reactance values of
the compensator are

X C
RS ¼

3V 2

QC
RS

; X C
ST ¼

3V 2

QC
ST

; X C
TR ¼

3V 2

QC
TR

ð13Þ

and susceptances are

BC
RS ¼ �

QC
RS

3V 2
; BC

ST ¼ �
QC

ST

3V 2
; BC

TR ¼ �
QC

TR

3V 2
ð14Þ

The sign of each reactance is the same as the sign of its
corresponding reactive power. For that reason, if the
reactive power is positive, the corresponding reactance is
inductive. If the power is negative, the corresponding reac-
tance is capacitive. The sign of each susceptance is the
opposite to that of its corresponding reactive power and
reactance.
5. Other algorithms

Other algorithms can be deduced to obtain the reactive
power values of the compensator’s reactances. For
instance, reactive powers of each phase can be obtained
from the active and reactive powers measured as shown

in Fig. 4 [7]. In this figure, SRS1 ¼ P RS1 þ jQRS1 and

STS1 ¼ P TS1 þ jQTS1 are the powers acquired by the

meters represented. As V R ¼ V =0�, V S ¼ V =�120� ¼
V �1=2� j

ffiffiffi
3
p

=2
� �

, V T¼ V =120� ¼ V �1=2þ j
ffiffiffi
3
p

=2
� �

, IL�
R ¼

IL
R=uR, and IL�

T ¼ IL
T=�120� þuT, then

P RS1 þ jQRS1 ¼ URSIL�
R ¼ ðV R � V SÞIL�

R

¼ ðV =0� � V =�120�ÞIL
R=uR

¼ 3

2
P R1 �

ffiffiffi
3
p

2
QR1

 !
þ j

ffiffiffi
3
p

2
P R1 þ

3

2
QR1

 !

ð15Þ

If the first and last members are compared

P RS1 ¼
3

2
P R1 �

ffiffiffi
3
p

2
QR1 ð16Þ

QRS1 ¼
ffiffiffi
3
p

2
P R1 þ

3

2
QR1 ð17Þ
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By subtracting the second equation, previously multiplied
by

ffiffiffi
3
p

, from the first equation, PR1 is eliminated and the
result is

QR1 ¼ �
1

2
ffiffiffi
3
p P RS1 þ

1

2
QRS1 ð18Þ

Similarly

QT1 ¼
1

2
ffiffiffi
3
p P TS1 þ

1

2
QTS1 ð19Þ

And, seeing that QR1 + QS1 + QT1 = QRS1 + QTS1 [7], the
value for QS1 is

QS1 ¼
1

2
ffiffiffi
3
p ðP RS1 � P TS1Þ þ

1

2
ðQRS1 þ QTS1Þ ð20Þ

By substituting (18)–(20) in (12), these values are
obtained

QC
RS ¼

P TS1ffiffiffi
3
p � QRS1

QC
ST ¼ �

P RS1ffiffiffi
3
p � QTS1

QC
TR ¼

P RS1 � P TS1ffiffiffi
3
p

ð21Þ

These are the powers of the reactances of the compensator
which are able to balance the currents and fully compen-
sate the reactive power. If (18)–(20) are substituted in
(11), the compensator reactances, which balance the sys-
tem, are obtained; nevertheless, the reactive energy ab-
sorbed in this case by the compensator–load group is Q2,
which can be arbitrarily fixed.

If Q2 is the reactive power delivered to the load, the sta-
tic compensator does not absorb reactive power (nor active
power, of course).
6. Example

The meters in Fig. 4 show the following powers in kW
and kVAr: SRS1 ¼ P RS1 þ jQRS1 ¼ 4þ j3 and STS1 ¼ P TS1þ
jQTS1 ¼ 8þ j5. V ¼ U=

ffiffiffi
3
p
¼ 220 V. U is the line-to-line

voltage. Thus, load currents are
jQST
C

RSjQC

TRjQC
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Fig. 4. In order to use the measures from two wattmeters and two
varmeters, other algorithms could be obtained.
IL
R ¼

SRS1

URS

� ��
¼ 13:12=�6:87�

IL
T ¼

STS1

UTS

� ��
¼ 24:76=57:99�

IL
S ¼ �IL

R � IL
T ¼ 32:57=�143:39�

The reactive power delivered to the load is Q1 =
QRS1 + QTS1 = 8 kVAr.

If the objective is to balance the system without altering
the reactive power it delivers to the load, (21) should be
used by adding Q2/3 = Q1/3 = 8 � 103/3 to them

QC
RS ¼

Q2

3
þ P TS1ffiffiffi

3
p � QRS1 ¼ 4285:47 VAr

QC
ST ¼

Q2

3
� P RS1ffiffiffi

3
p � QTS1 ¼ �4642:73 VAr

QC
TR ¼

Q2

3
þ P RS1 � P TS1ffiffiffi

3
p ¼ 357:27 VAr

(14) gives the values of the susceptances

BC
RS ¼ �

QC
RS

3V 2
¼ �29:51� 10�3 S

BC
ST ¼ �

QC
ST

3V 2
¼ 31:97� 10�3 S

BC
TR ¼ �

QC
TR

3V 2
¼ �2:46� 10�3 S

The phase currents of the compensator are

½IC� ¼
IC

R

IC
S

IC
T

2
64

3
75

¼
jðBC

RS þ BC
TRÞ �jBC

RS �jBC
TR

�jBC
RS jðBC

RS þ BC
STÞ �jBC

ST

�jBC
TR �jBC

ST jðBC
TR þ BC

STÞ

2
64

3
75

V R

V S

V T

2
64

3
75

¼
11:74=�63:96�

11:74=56:04�

11:74=176:04�

2
64

3
75

which is a negative-sequence symmetrical current set (more
comments on this result will come later). The phase cur-
rents before the compensator are

½I � ¼
IR

IS

IT

2
64

3
75 ¼

IL
R

IL
T

IL
S

2
64

3
75þ

IC
R

IC
S

IC
T

2
64

3
75 ¼

21:85=�33:69�

21:85=�153:69�

21:85=86:31�

2
64

3
75

which is a positive-sequence symmetrical current set, as
intended.

If ½V �t ¼ ½V R; V S; V T�, then the complex power delivered
to the compensator–load group is [7]

½V �t½I �� ¼ 12000þ j8000

which is equal to that of the load alone.
If the objective is to compensate the reactive power, then

Q2 = 0. In that case
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a three-wire load.
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BC
RS ¼ �11:15� 10�3S; BC

ST ¼ 50:34� 10�3 S; and

BC
TR ¼ 15:91� 10�3 S;

½I � ¼
IR

IS

IT

2
64

3
75 ¼

18:18=0�

18:18=�120�

18:18=120�

2
64

3
75

and the complex power delivered to the compensator–load
group is

½V �t½I �� ¼ 12000þ j0
R
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T

N
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_

_
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Fig. 6. Static VAr compensator for a four-wire three-phase load.
7. Currents of the compensator

The previous example showed that the currents of the
compensator form a negative-sequence symmetrical cur-
rent set, when only the line currents are balanced without
compensating the reactive power. This is not accidental,
for it happens whenever the value of the compensator’s
reactive energy is zero. Indeed, as the phase-neutral volt-
ages are balanced, they only have positive-sequence sym-
metrical component V d, therefore only the currents’
positive-sequence symmetrical component of the compen-
sator IC

d intervenes in the formula of the power it absorbs.
That is to say, the value of the complex power supplied to
the compensator at all times is

SC ¼ 3V dIC�
d ¼ P C þ jQC

where IC�
d is the conjugate of IC

d . The value of the active
power PC is always zero, due to the compensator being
formed only by reactances. If the value of the reactive
power QC is also zero, then

SC ¼ 3V dIC�
d ¼ 0

Seeing that V d 6¼ 0, it follows that IC�
d ¼ 0 and IC

d ¼ 0.
Therefore, if QC = 0, the compensator’s currents lack of

positive-sequence symmetrical component. Those currents
are also lacking zero-sequence symmetrical component,
seeing that they add up to zero, consequently only the neg-
ative-sequence symmetrical component cannot be zero. It is
concluded that the compensator’s currents are a negative-
sequence symmetrical current set when the value of its reac-
tive power is zero.
8. Compensator for four-wire three-phase loads

Fig. 5 shows a procedure to cancel out the current
through the neutral wire of any four-wire three-phase load.
Two reactances, X1 and X2, are connected between the R

and S phases, and the neutral wire, respectively, so that

� V =0�

jX 1

� V =�120�

jX 2

¼ IN ð22Þ

Voltages of the initial load are not affected by the connec-
tion of X1 and X2. The active power is not increased either.
Nevertheless, the current through the neutral wire, I 0N, is
canceled out, which, in fact, transforms the load into a
three-wire three-phase load. The previously seen compen-
sator can now be connected to the three phases, as shown
in Fig. 6.

Phasor IN can be determined by using a watt–varmeter
connected as indicated in Fig. 5. This meter reads

ð�V RÞð�INÞ� ¼ V RI�N ¼ P NR þ jQNR

where PNR and QNR are the wattmeter and varmeter read-
ings, respectively. From this formula it can be seen that

IN ¼
P NR þ jQNR

V R

� ��
¼ P NR

V
� j

QNR

V

If this result is substituted in (22), then

X 1 ¼
ffiffiffi
3
p

V 2

P NR �
ffiffiffi
3
p

QNR

X 2 ¼
ffiffiffi
3
p

V 2

2P NR

which are the reactances that cancel out the current
through the neutral wire.

9. Load voltage

So far, the voltages of the load have been supposed to be
symmetrical. But, if the load currents are not balanced,
then the voltage drops of the phases, ZLIR, ZLIS, and
ZLIT, are different, which leads to unbalanced voltages near
the load. However, the iterative operation of the compen-
sator quickly produces symmetrical voltages, when
connected.

Fig. 7 summarizes one of the simulations made. It shows
a three-wire three-phase system formed by three symmetri-
cal voltage sources V S

R ¼ 100=0�, V S
S ¼ 100=�120�, and
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Fig. 7. Simulation network.

Table 1
Phase voltages and currents of the network simulation (Fig. 7) for each
iteration of the compensator

Iteration VR (V) VS (V) VT (V) IR (A) IS (A) IT (A)

0 86.70 85.42 92.67 9.74 10.84 5.33
1 93.20 94.30 94.72 6.28 5.23 5.81
2 94.06 94.38 94.06 5.73 5.67 5.92
3 94.11 94.13 94.04 5.73 5.77 5.79
4 94.11 94.13 94.04 5.76 5.77 5.76
5 94.07 94.07 94.07 5.76 5.76 5.76
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three- phase

load

R

S

T

Signal
conditioning

network
(B)

I/O Cards
Computer

(LabVIEW)

Static
compensator

Signal
conditioning

network
(A)

Fig. 8. Block diagram of the experimental device.

Fig. 9. Screenshots showing the unbalanced phase currents near the load
(top) and the balanced currents resulting from using the compensator
(bottom).
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V S
T ¼ 100=120�. The impedance of each phase wire is ZL ¼

1þ j1. The load is a triangle of impedances ZRS ¼ 10þ j15,
ZST ¼ 20þ j25, and ZTR ¼ 80þ j30. The effective values of
the phase currents without the compensator are

IR ¼ 9:74 A; IS ¼ 10:84 A; and IT ¼ 5:53 A:

The load voltages are

V R ¼ 86:70 V; V S ¼ 85:42 V; and V T ¼ 92:67 V:

Table 1 shows the values of the phase currents and volt-
ages when the compensator is connected, which have been
obtained from the iterated use of (12) and (13). V has been
substituted each time by URS=

ffiffiffi
3
p

in these algorithms. After
the fifth iteration of the compensator the currents and volt-
ages are balanced. The tendency to balance is fast, because
right after the second iteration of the algorithm the effective
value of the currents are very close to each other, as occurs
with the effective values of the voltages.

10. Experimental test

An experimental automatic device was designed and
built at our laboratory to test the results of this paper.
Fig. 8 shows its block diagram. It consists of a passive load
formed by impedances connected between every two
phases, which is represented in Fig. 8 by the unbalanced
three-phase load block. The connection of impedances
can be modified manually, thus allowing to obtain bal-
anced or unbalanced loads easily. Using a data acquisition
(DAQ) card and the application LabVIEW running on a
desktop computer, the instantaneous currents iR and iT,
and the instantaneous voltages vRS and vTS, are measured
before and after the compensator. So, by programming
the appropriate algorithms in LabVIEW, the values of
the reactances of the compensator are obtained and the
instruction to connected them to the original load is given
through a digital output card.

Fig. 9 is a screenshot from the tests. The upper part of
the picture shows the unbalanced currents near the load,
and the lower part shows the balanced currents resulting
from using the compensator.
11. Conclusion

Advantages of the analysis of three-phase loads
described by relations between powers, instead of imped-
ances, are shown in this paper. When its use is possible, this
analysis method explicitly indicates if results can, or can-
not, be applied to active loads. More specifically, the pos-
sibility to use it to obtain the static VAr compensators’
algorithms is shown. Then, it is made clear that the com-
pensators’ function is valid whatever kind of three-phase
load it is connected to, particularly, whether they are active
or passive loads. It is also shown that, if a compensator
does not deliver reactive power, its three currents are
always a negative-sequence symmetrical current set.
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