
Curre

a

b

c

D.Y. Sh
School of E
Departmen
College of E

a r t i c

Article histo
Received 24
Received in
Accepted 2
Available on

Keywords:
Current tra
Saturation
Nonlinear r
Field Progra

1. Introd

Iron-c
rent mea
acceptab
saturatio
ondary c
This may
Two way
iron-core
uration; (
influence

In rec
current d
studied. I
mated by
the magn
assumpti
fault, whi
anteed in
is avoide
ondary c
lifting sch

∗
The Univers
fax: +44 15

E-mail a

0378-7796/
http://dx.do

Corresp
Electric Power Systems Research 97 (2017) 34–40

Contents lists available at SciVerse ScienceDirect

Electric Power Systems Research

journa l homepage: www.e lsev ier .com/ locate /epsr

nt transformer saturation compensation based on a partial nonlinear model
a b b,a,∗ ci , J. Buse , Q.H. Wu , C.X. Guo

lectric Power Engineering, South China University of Technology, Guangdong 510640, China
t of Electrical Engineering and Electronics, The University of Liverpool, Liverpool L69 3GJ, UK
lectrical Engineering, Zhejiang University, Hangzhou 310027, China

l e i n f o

ry:
June 2016
revised form 7 November 2016

8 November 2016
line 14 January 2017

a b s t r a c t

This paper proposes a partial nonlinear model to accurately represent the nonlinear saturation charac-
teristic of a current transformer (CT). Based on the model, the saturated section of the secondary current
as well as the unsaturated section can be used in a regression process to estimate model parameters.
The saturated section normally lies near the inception of a fault, therefore accurate parameters can be
obtained faster compared with the methods using only unsaturated sections. The pre-fault remanent flux
nsformer

egression
mmable Gate Array

and DC-offset, which could significantly influence CT saturation, are both considered in the model, thus
they do not affect the accuracy of the parameter estimation. The computational load of the regression
calculation is significantly reduced by using separable nonlinear least squares (SNLLS) method. This pro-
vides the feasibility to implement the method for real-time protective relaying. The performance of the
method has been evaluated on the data obtained from both PSCAD/EMTDC simulation and live recording
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ore current transformers (CTs) are widely used for cur-
surements in power systems due to their reliability and
le cost. Their major disadvantage is concerned with the
n of the iron-cores, which causes the distortion of sec-
urrents appearing at the inputs of protection relays [1].
, in consequence, lead protection relays to malfunction.
s are normally used to alleviate this impact: (1) using large
CTs to reduces the probability of the occurrence of CT sat-
2) employing compensation algorithms to eliminate the
of CT saturation. Obviously the latter is more economical.

ent years, the techniques of compensating the secondary
istortion caused by CT saturation have been intensively
n [2], the magnetizing current of a saturated CT is esti-
applying the calculated instantaneous flux of the CT to
etization curve of the CT. This technique relies on the

on that the remanent flux in the CT is zero prior to the
ch has the drawback that the assumption cannot be guar-
every fault condition. In [3,4], the remanent flux problem
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equal to the flux at the knee point in the magnetiza-
e of the CT. However, due to the disturbances caused by
ing filters and noise, the start points detected by these
may have large deviations from their true values. Some
use a complex inverse function to get the compensated
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estimation. Then a healthy secondary current waveform is
cted from the estimated parameters. The remanent flux
red in the nonlinear part of the model, therefore it does

t the accuracy of the estimated parameters. Tests show
parameters can be obtained within 0.5–0.8 of a cycle after
rrence. Moreover the phasor of the fault current could

rectly calculated from the parameters without waveform
ction. Normally, a multi-dimension nonlinear regression
t to be realized in a real-time embedded system, such as
n relays, due to its heavy computational load. However,
near regression can be transformed to a combination of a
ension nonlinear regression and a multi-dimension lin-

ssion by using separable nonlinear least squares (SNLLS)
Thus, a great computational load reduction is achieved.
od has been implemented in an FPGA and tested in a
protection relay test bench. The test results indicate the
of this method for future relaying applications.

near regression model of secondary current

resents a simplified equivalent circuit of a CT, where i (t)
mary current referred to the secondary side, i (t) is the
ing current, i (t) is the secondary current, Z is the exci-
pedance, R and L are the total secondary resistance and
ce respectively. The relationship among the currents can
sed as

t) + i (t), (1)

t) is measured through a CT. As functions of time, i (t)
are only rely on some undetermined constant parameters,
an be transformed to a regression model.
rimary fault current i (t) is the superposition of a sinu-
aveform (i.e., the phasor of the fault current) and an
ially decaying DC-offset, which is determined by the fac-
rce voltage, circuit impedance, fault inception angle and
of the primary fault path. It can be expressed as

−�t

s the amplitude, ω is the angular speed, and � is the incep-
e. B and � are respectively the initial value and the time
of the DC-offset. By respectively applying trigonometric
n and first-order Taylor series expansion on the cosine
the exponential term of the equation, a linear approxi-
n be obtained:

cos � sin(ωt) + A sin � cos(ωt) + B − �t

sin(ωt) + a cos(ωt) + a + a t, (3)
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Fig. 1. Simplified equivalent circuit of a CT.
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troduced in [10] provides an accurate approximation to
. The typical expression of the model is

5 33
2 3

− k are the magnetizing characteristic of the CT. ϕ(t) and
a relationship described in

di (t)
s s s

ϕ(t) + k ϕ(t) + k ϕ(t) , (4)

3

si (t) + L
dt

g it from t to t yields∫
i (t)dt + L (i (t) − i (t )) + ϕ(t ). (6)

t

e ϕ(t) in (4) with (6) and set remanent flux ϕ(t ) as an
parameter a , i

([i (t ), i (t )· · ·i
(t ), i (t )· · ·i (t)] denotes the samples of the secondary
etween t and t. Then a nonlinear regression model (8) is
by substituting (8) and (7) into (1).

sin(ωt) + a cos(ωt) + a + a t

F ([i (t ), i (t )· · ·i (t)], a ). (8)
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this model aims to estimate a − a using the sampled

y fault current.

based regression scheme
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lts have shown that the convergence speed of the two
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Table 1
Configurations of test cases 1–5.

X/R ratio Remanent flux Fault inception angle Fault location Fault resistance Secondary burden

Case 1 30
Case 2 40
Case 3 20
Case 4 60
Case 5 20

0% 0 0.1 �
80% 45 0.1 �

0% 180 2 �
80% 45 0.1 �

0% 90 0.1 �

◦ 80 km
◦ 100 km
◦ 80 km
◦ 10 km
◦ 30 km

25 �
25 �
30 �, 0.5 pf
1.5 �
50 �
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ssed using the proposed method. These data sets are cat-
according to X/R ratio, remanent flux and saturation index.
ation index, K , which indicates the level of saturation, is
y

is the e.m.f seen at the CT core without any transient
nt (i.e., in the steady state), and E is the e.m.f at which
ux touches ± saturation flux in steady state. Since larger

sts in the live recorded data, the samples of 0.8 cycle are
e parameter estimation.
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ce. Their ε are 4.53% and 3.08%, respectively. TheNRMS

ons of test cases 6 and 7.
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20 75%
50 75%
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Fig. 11. Compensated result of case 7.

decaying speed of case 6 is faster than that of case 7
f its smaller X/R ratio. Since the first order Taylor series

o approximate the exponentially decaying DC-offset, a
y current with a slower decaying DC-offset has a more
approximation and a better parameter estimation.
erage ε of the compensation results of the 84 data
6%. And the maximum ε is 6.54%. It is obtained from
rio whose configurations are: X/R ratio (20), remanent flux
d saturation factor (18).

NRMS

NRMS

are implementation and real-time test

implementation

oposed method has been implemented as one of the func-
ules in the System-on-a-Chip (SoC) based protection relay
d at The University of Liverpool. This relay is designed
dvantage of the flexibility of general microprocessors
rmance boosting of paralleled protection modules. The

of the relay, which is relevant to the saturation com-
, is illustrated in Fig. 12. The Nios II microprocessor is
of coordinating all the modules in the subsystem. The
d Saturation Detector detects the saturation condition
larity using a sliding window of seven samples (this win-
parallel with and shorter than the window used by the
method, thus no extra delay is introduced to the com-
outputs by the detector). This detector was developed as

ed logic module using Verilog HDL. The SNLLS Based Sat-
ompensator has two operation modes, i.e. LLS mode and
ode, which are used to calculate the parameters a − a
nsaturated and saturated conditions, respectively. The

etween these two modes depends on the results of the
Under LLS mode, a is preset to be zero. The calculated
rs are used by the microprocessor to generate compen-

1 5

5

ig. 12. Block diagram of saturation compensation subsystem.
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n a fully fixed logic module, thus an FPU is a suitable
is FPU has seven paralleled calculation channels and sup-
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ployed by the compensator, this calculation time does
problems in the real-time implementation. Moreover,
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time test

t the real-time performance of the SoC based protection
al-time protection relay test bench has been established.
components and their connections are illustrated in
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