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This paper deals with actuator fault detection and estimation for the Lur’e differential
inclusion system. An adaptive full-order observer is used to detect the occurrence of the
actuator fault. Then, based on a reduced-order observer, an approach to estimate the actu-
ator fault is presented. A simulation of rotor system is given to illustrate the effectiveness
of the proposed method.
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1. Introduction

Recently, the investigation of the Lur’e differential inclusion (DI) system has become a hot topic in the field of control
[1–8]. The research motivation originates from the need to analyze the systems with non-smooth or discontinuous behavior,
such as control dynamic systems with Coulomb friction, circuits systems with ideal diode, neural networks with discontin-
uous neuron activations and so on. In the Lur’e DI system, the set-valued mapping is only set-valued on a countable set of
points and continuous on the other points. The current research mainly focuses on two aspects: one is the stabilization prob-
lem [3]. Under the extension of a Popov-like criterion, [3] designed a state feedback law to stabilize the Lur’e DI system. The
other is the observer design [4–8]. [4,5] presented the observer design method for the Lur’e DI system by passive approach, it
should be noted that [5] verified the well-posed property of the observer. [6] proved the existence of the reduce-order ob-
server under the same conditions as that in [5]. By using the theory of adaptive observer, [7] designed an adaptive observer
for the Lur’e DI system with uncertain parameters. [8] considered the non-fragile observer with disturbance attenuation for
the Lur’e DI system. Besides the mentioned references, there are also other works on observers for the Lur’e DI system, such
as [9,10].

In many real systems, the problem of fault detection and isolation (FDI) is very important because the actuator or sensor
fault always arises. Many approaches have been well developed for FDI, such as neural-network-based method [11,12], sys-
tem identification method [13,14], parity relations approach [15,16], the observer-based method [17–27]. Among these ap-
proaches, observer-based method has been studied extensively and proved to be one of the most effective method. By the
eges and
jects for
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theory of eigenstructure assignment, full-order observer was constructed for FDI [17]. Sliding mode observer has been used
successfully in FDI context by Edwards et al. [18], then it was extended to study the system with sensor fault and uncertainty
respectively by Tan and Edwards [19,20]. By using the theory of differential geometry, nonlinear observer has been designed
for FDI of nonlinear systems [21]. For a class of nonlinear systems with uncertain parameters, the adaptive observer was em-
ployed for FDI [22]. Fault estimation is also important in FDI problem, because the size and characteristics of the fault can be
determined if the fault is estimated. Based on the detection observer, the fault was reconstructed to converge to the real va-
lue of the fault [19,20,23–27].

We know that the fault may occur in the actuator of the Lur’e DI system, it is important to find a strategy to determine
whether the fault would happen. If the fault occurs in the actuator, it is necessary to reconstruct the fault. However, to the
authors’ best knowledge, little attention has been paid to the FDI problem for the Lur’e DI system. Motivated by the previous
discussion, this paper considers actuator fault detection and estimation for the Lur’e DI system. The paper is organized as
follows: Section 2 presents the problem formulation and preliminaries. Section 3 designs an adaptive full-order observer
to detect the actuator fault. Section 4 presents a method to estimate the actuator fault based on a reduced-order observer.
Section 5 gives an example of rotor system to illustrate the effectiveness of the proposed method.

Notations: Throughout this paper, Rn denotes the n-dimensional Euclidean space, Rn�m is the set of n�m real matrices. jjxjj
denotes the Euclidean norm of the vector x; xT stands for the transposition of the vector x;AT is the transposition of the matrix A;
rankðAÞ represents the rank of the matrix A and kminðAÞ denotes the minimal eigenvalue of the matrix A. P > ð<Þ0 means the positive
(negative) definite matrix P with P ¼ PT ; I is the identity matrix with appropriate dimensions. GraphðFÞ stands for the graph of the
set-valued function FðxÞ, i.e., GraphðFÞ ¼ fðx; x�Þjx� 2 FðxÞg. Absolutely continuous is shorten as AC.
2. Problem formulation and preliminaries

Let us consider the following Lur’e DI system with actuator fault:
_x ¼ Axþ Gxþ DUðxÞ þ Buþ Euf ;

x 2 �qðHxÞ;
y ¼ Cx;

8><
>: ð1Þ
where x 2 Rn is the state, u 2 Rm is the control input, and y 2 Rq is the measurable output. q : Rr ! Rr is a set-valued mapping,
x 2 Rr is the output of q and stands for the multi-valued nonlinear input of the system. U : Rn ! Rp is a known smooth ma-
trix function. The signal uf 2 Rl represents the unknown actuator fault vector, the norm of which is bounded.
A 2 Rn�n;G 2 Rn�r ;D 2 Rn�p;B 2 Rn�m; E 2 Rn�l;H 2 Rr�n and C 2 Rq�n are determined matrices.

The nonlinear multi-valued term x 2 �qðHxÞ plays an important role in practical applications when we have to adopt
accurate models for the real systems. It is used to describe Coulomb friction in the rotor system, which can be seen from
the Simulation part.

Firstly, we give some basic definitions of DI, detailed presentation is referred to [28].
Definition 1. [28] Let J � Rm. A set-valued mapping F : J ! Rm with non-empty values is said to be upper semi-continuous
at x 2 J, if for any open set U containing FðxÞ, there exists an open neighborhood M of x such that FðMÞ � U. The mapping F

is said to be upper semi-continuous if it is upper semi-continuous at every x 2 J.
Definition 2. [28] Let Fðt; xðtÞÞ be a set-valued function. A function x : ½t0;1Þ ! Rn is a solution to the DI _xðtÞ 2 Fðt; xðtÞÞ
with xðt0Þ ¼ x0, if xðtÞ is AC and satisfies _xðtÞ 2 Fðt; xðtÞÞ for almost all t 2 ½t0;1Þ.
Definition 3. [28] A set-valued function FðxÞ : Rn ! Rn is called monotone if its graph is monotone in the sense that for all
ðx; yÞ; ðx�; y�Þ 2 GraphðFÞ it holds that ðy� y�ÞTðx� x�ÞP 0.

In order to establish the main results of this paper, we need the following assumptions.

Assumption 1. H and C are of full row rank and E is of full column rank, i.e., rankðHÞ ¼ r < n; rankðCÞ ¼ q < n and
rankðEÞ ¼ l < n.
Assumption 2. The set-valued mapping qð�Þ satisfies:
Assumption 2-1. qð�Þ is non-empty, convex, closed, bounded and only set-valued on a countable set of points, and is con-
tinuous on the other points.
Assumption 2-2. qð�Þ is monotone.
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Assumption 3. The nonlinear matrix function UðxÞ is Lipschitz in x with Lipschitz constant c, i.e.,
jjUðxÞ �Uðx̂Þjj 6 cjjx� x̂jj; ð2Þ
where c is unknown.
Assumption 4. There exist matrices P 2 Rn�n > 0; Q 2 Rn�n > 0; L 2 Rn�q; F 2 Rr�q; M 2 Rp�q and N 2 Rl�q such that
PðA� LCÞ þ ðA� LCÞT P ¼ �Q ; ð3Þ

GT P ¼ H � FC; ð4Þ

DT P ¼ MC; ð5Þ

ET P ¼ NC: ð6Þ
Remark 1. By Definition 1, Assumption 2–1 implies that the set-valued mapping qð�Þ is upper semi-continuous.
Remark 2. In many practical systems, the Lipschitz constant of the nonlinear term UðxÞ is usually unknown. Thus, we sup-
pose that c is unknown in this paper.
Remark 3. Assumption 4 is known as dissipativity condition for the system considered in this paper, and it is also the suf-
ficient condition for the existence of the observer.
Remark 4. (3)–(6) are a set of LMEs (linear matrix equalities), the feasible solutions of these LMEs can be computed by Scilab
[29].

Then, we present some lemmas which are essential to our further investigation.

Lemma 1. [28] Let F be a set-valued function, we assume that F is upper semi-continuous and that the image of ðt; xÞ under F is
closed, convex and bounded for all t 2 R and x 2 Rn. Then, for each x0 2 Rn there exists an AC function xðtÞ defined on ½0;1Þ, which
is a solution of the initial value problem _xðtÞ 2 Fðt; xðtÞÞ; xð0Þ ¼ x0.
Lemma 2. [30] If V : R! R is a non-decreasing function and if VðtÞ 6 M for some M 2 R and all t 2 R, then Vð�Þ converges.
3. Fault detection based on full-order adaptive observer

In this section, we construct the adaptive full-order observer to detect the actuator fault. The adaptive full-order observer
of the system (1) is designed as follows:
_̂x ¼ Ax̂þ Gx̂þ DUðx̂Þ þ Buþ Lðy� Cx̂Þ þ 1
2 b̂DMðy� Cx̂Þ;

x̂ 2 �qðHx̂þ Fðy� Cx̂ÞÞ;

(
ð7Þ
with the adaption law
_̂b ¼ gjjMðy� Cx̂Þjj2; ð8Þ
where g is a positive constant. The observer used in (7) is called an extended observer and was introduced by Arcak and
Kokotovic [31].

Remark 5. In view of Remark 1 and Lemma 1, Assumptions 2-1 and 3 guarantee the existence of the solution of (1) and (7)
when the input uðtÞ is AC.

Subtracting (7) from (1), we obtain the following error system
_e ¼ ðA� LCÞeþ Gðx� x̂Þ þ D ~U� 1
2 b̂DMCeþ Euf ;

x 2 �qðHxÞ;
x̂ 2 �qðHx̂þ FCeÞ;
_̂b ¼ gjjMCejj2;

8>>>><
>>>>:

ð9Þ
where e ¼ x� x̂; ~U ¼ UðxÞ �Uðx̂Þ. Now we can state Theorem 1 of the paper.
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Theorem 1. Let uf ¼ 0 and u be an AC input. Consider the system (1), the adaptive full-order observer (7) with (8) and the error
system (9). If Assumptions 1–4 hold, then (7) with (8) is an asymptotic observer of the system (1), i.e., limt!1eðtÞ ¼ 0.

Proof. Let ~b ¼ b� b̂, where _b ¼ c2

e and the constant e satisfies _0 < e 6 1
2 kminðQÞ. Then _~b ¼ � _̂b ¼ �gjjMCejj2. Consider the fol-

lowing Lyapunov function candidate
V ¼ eT Peþ 1
2
g�1~b2: ð10Þ
By the fact that a quadratic function of AC functions is itself AC, since e and ~b are AC, the derivative of V exists a.e. Taking the
derivative of V along the trajectories of (9) results in
_V ¼ 2eT P _eþ g�1~b _~b ¼ 2eT P½ðA� LCÞeþ Gðx� x̂Þ þ D ~U� 1
2

b̂DMCe� � ~bjjMCejj2

¼ 2eT PðA� LCÞeþ 2eT PGðx� x̂Þ þ 2eT PD ~U� b̂eT PDMCe� ~bjjMCejj2: ð11Þ
By (3), then
2eT PðA� LCÞe ¼ eT ½PðA� LCÞ þ ðA� LCÞT P�e ¼ �eT Qe: ð12Þ
It follows from (4) that
2eT PGðx� x̂Þ ¼ 2eTðH � FCÞTðx� x̂Þ ¼ 2½ðH � FCÞe�Tðx� x̂Þ;
where x 2 �qðHxÞ and x̂ 2 �qðHx̂þ FCeÞ. In view of the monotone property of the set-valued mapping qð�Þ and Definition 3,
the following inequality holds
½ðH � FCÞe�Tðx� x̂Þ ¼ �½ðH � FCÞe�T ½�x� ð�x̂Þ� � 0;
which means that
2eT PGðx� x̂Þ � 0: ð13Þ
By (2) and (5), we obtain that
2eT PD ~U ¼ 2ðMCeÞT ~U � 2jjMCejjjj~Ujj � 2cjjMCejjjjejj ¼ 2jjcMCejjjjejj 6 c2

e
jjMCejj2 þ ejjejj2 ð14Þ
and
b̂eT PDMCe ¼ b̂eTðMCÞT MCe ¼ b̂jjMCejj2: ð15Þ
Substituting (12)–(15) into (11) yields
_V 6 eTð�Q þ eIÞeþ c2

e
� b̂� ~b

� �
jjMCejj2; ð16Þ
which implies that
_V 6 eTð�Q þ eIÞe: ð17Þ
In view of the expression of e, then eTð�Q þ eIÞe 6 �eeT e, which deduces to
_V 6 �eeT e: ð18Þ
Integrating both sides of (18) from 0 to t, (18) becomes
VðtÞ � Vð0Þ 6 �
Z t

0
eeTðsÞeðsÞds: ð19Þ
In view of the fact that VðtÞ > 0 and Vð0Þ <1, (19) implies that
Z t

0
eeTðsÞeðsÞds 6 Vð0Þ <1: ð20Þ
By Lemma 2, we can conclude that _R t
0eeTðsÞeðsÞds converges, which means that limt!1eðtÞ ¼ 0. We have completed the

proof. h
Remark 6. To obtain (13), we have employed (4). This technique that allows to use the chain rule from convex analysis has
been introduced by Brogliato [32].
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Remark 7. If no fault occurs in the actuator, the state of the observer (7) with (8) asymptotically converges to the state of the
system (1).
Remark 8. From (18), we can get the conclusion that the equilibrium ~b ¼ 0 of the error system (9) is stable but not asymp-
totically stable, and b̂ may not converge to the nominal value b.
Remark 9. The advantage of the designed observer is that c is unknown and e need not be designed. This is because c and e
are injected into the constant _b ¼ c2

e , which can be regulated by the adaption law (8).

When a fault occurs, i.e., uf – 0, the observer (7) with (8) is also called detection observer for the system (1). Based on the
detection observer, we propose an approach for detecting the actuator fault, which is presented as follows:
ifjjeyjj 6 l; then no fault occurs;
ifjjeyjj > l; then a fault occurs in the actuator;

�
ð21Þ
where ey ¼ y� Cx̂ and the alarm threshold l is a pre-specified positive constant.
4. Fault estimation based on reduced-order observer

In this section, we present a method to estimate the fault by the reduced-order observer. In order to simplify the follow-
ing proof, we assume that C ¼ ½Iq 0�.

Remark 10. From the theory of linear system, we know that there exists a linear transformation T such that CT�1 ¼ ½Iq 0�.
Thus the assumption that C ¼ ½Iq 0� is not too restrictive.

We decompose x;A;G;D;B; E;H; P;Q into the forms as
x ¼
x1

x2

� �
; A ¼

A11 A12

A21 A22

� �
; G ¼

G1

G2

� �
; D ¼

D1

D2

� �
; B ¼

B1

B2

� �
;

E ¼
E1

E2

� �
; H ¼ ½H1 H2�; P ¼

P11 P12

PT
12 P22

� �
; Q ¼

Q11 Q 12

QT
12 Q 22

� �
;

where x1 2 Rq; A11 2 Rq�q; G1 2 Rq�r ; D1 2 Rq�p; B1 2 Rq�m; E1 2 Rq�l; H1 2 Rr�q; P11 2 Rq�q; Q 11 2 Rq�q. Denote that
K ¼ �P�1
22 PT

12: ð22Þ
We have Theorem 2 which is necessary for the following discussion.
Theorem 2. Let K be defined in (22). If Assumption 4 holds, then
P22ðA22 � KA12Þ þ ðA22 � KA12ÞT P22 ¼ �Q22; ð23Þ

ðG2 � KG1ÞT P22 ¼ H2; ð24Þ

�KD1 þ D2 ¼ 0; ð25Þ

�KE1 þ E2 ¼ 0: ð26Þ
Proof. Since C ¼ ½Iq 0�, by the property of block matrix, (3)–(6) leads to
PT
12A12 þ AT

12P12 þ P22A22 þ AT
22P22 ¼ �Q22; ð27Þ

GT
1P12 þ GT

2P22 ¼ H2; ð28Þ

DT
1P12 þ DT

2P22 ¼ 0; ð29Þ

ET
1P12 þ ET

2P22 ¼ 0: ð30Þ
Substituting (22) into (27)–(30) and considering the fact that P22 > 0 is inversible, we can complete the proof of Theorem 2. h
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Remark 11. The step of computing K is as follows: Firstly, we use Scilab to solve the matrix P from (3)–(6). Then, we use the

decomposition of P, i.e., _P ¼ P11 P12

PT
12 P22

� �
to compute K.

Now we design the reduced-order observer for the system (1) as
_̂z ¼ ðA22 � KA12Þẑþ ðG2 � KG1Þx̂þ ðB2 � KB1Þuþ ½ðA21 � KA11Þ þ ðA22 � KA12ÞK�y;
x̂ 2 �qðH2ẑþ ðH1 þ H2KÞyÞ;
x̂2 ¼ ẑþ Ky:

8><
>: ð31Þ
Theorem 3. Let u be an AC input and K be given in (22). If Assumptions 1–4 hold, then (31) is a reduced-order observer of the
system (1), i.e., limt!1½x2ðtÞ � x̂2ðtÞ� ¼ 0.
Proof. Since y ¼ x1, we can write the system (1) as
_y ¼ A11yþ A12x2 þ G1xþ D1UðxÞ þ B1uþ E1uf ;

_x2 ¼ A21yþ A22x2 þ G2xþ D2UðxÞ þ B2uþ E2uf ;

x 2 �qðH1yþ H2x2Þ:

8><
>: ð32Þ
Denote that z ¼ x2 � Ky, then
_z ¼ ðA22 � KA12Þzþ ðG2 � KG1Þxþ ðD2 � KD1ÞUðxÞ þ ðB2 � KB1Þuþ ðE2 � KE1Þuf þ ½ðA21 � KA11Þ þ ðA22 � KA12ÞK�y;
x 2 �qðH2zþ ðH1 þ H2KÞyÞ;
x2 ¼ zþ Ky:

8><
>:

ð33Þw of (25) and (26), (33) becomes
In vie
_z ¼ ðA22 � KA12Þzþ ðG2 � KG1Þxþ ðB2 � KB1Þuþ ½ðA21 � KA11Þ þ ðA22 � KA12ÞK�y;
x 2 �qðH2zþ ðH1 þ H2KÞyÞ;
x2 ¼ zþ Ky:

8><
>: ð34Þ
Subtracting (31) from (34) yields the following error system
_ez ¼ ðA22 � KA12Þez þ ðG2 � KG1Þðx� x̂Þ;
x 2 �qðH2zþ ðH1 þ H2KÞyÞ;
x̂ 2 �qðH2ẑþ ðH1 þ H2KÞyÞ;

8><
>: ð35Þ
where ez ¼ z� ẑ. Choosing the Lyapunov function candidate as VðezÞ ¼ eT
z P22ez, we have
_VðezÞ ¼ 2eT
z P22 _ez ¼ eT

z ½P22ðA22 � KA12Þ þ ðA22 � KA12ÞT P22�ez þ 2eT
z P22ðG2 � KG1Þðx� x̂Þ: ð36Þ
By (23), then
eT
z ½P22ðA22 � KA12Þ þ ðA22 � KA12ÞT P22�ez ¼ �eT

z Q 22ez: ð37Þ
Considering (24), the following equality holds
2eT
z P22ðG2 � KG1Þðx� x̂Þ ¼ 2eT

z HT
2ðx� x̂Þ;
where x 2 �qðH2zþ ðH1 þ H2KÞyÞ and x̂ 2 �qðH2ẑþ ðH1 þ H2KÞyÞ. By the monotone property of the set-valued mapping
qð�Þ, we have
eT
z HT

2ðx� x̂Þ ¼ �ðH2ezÞT ½�x� ð�x̂Þ� � 0;
which means that
2eT
z P22ðG2 � KG1Þðx� x̂Þ � 0: ð38Þ
Substituting (37), (38) into (36) results in
_VðezÞ 6 �eT
z Q 22ez: ð39Þ
Since Q 22 > 0, (39) implies that _VðezÞ < 0. Thus we can conclude that limt!1½ẑðtÞ � zðtÞ� ¼ 0, i.e., limt!1½x̂2ðtÞ � x2ðtÞ� ¼ 0. h

We now use the reduced-order observer (31) to estimate the actuator fault uf of the system (1), which is given as follows:
ûf ¼ ðET EÞ�1
ET ½ _̂�x� A�̂x� Gx̂� DUð�̂xÞ � Bu�; ð40Þ
where �̂x ¼ ½yT ; x̂T
2�

T , and x̂2 is generated by the reduced-order observer (31).
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Remark 12. Theorem 3 shows that x̂2 always converges to x2 asymptotically whether uf ¼ 0 or not, thus the performance of
the reduced-order observer (31) is not affected by the fault uf . Because (26) decouples uf from the error dynamics (hence so
does (6)), (5) and (6) are the big hypothesis which make the reduced-order observer work.
Remark 13. In real systems, _̂�x is difficult to compute due to the presence of the noise. We can resort to the method intro-
duced by Dierckx [33] to treat with the derivative of �̂x.
5. Simulation

In this section, we take the rotor system in [4] for example. The rotor system is defined as: The input of rotor system is
the voltage, which is between 5 and 5 V. The upper and lower discs are connected through a low-stiffness steel string, and
the dc-motor is connected to the upper steel disc by the gear box. Both discs can rotate around their geometric centers
and the related angular positions are measured by incremental encoders. And a brake apparatus is installed at the lower disc
and creates a friction that induces limit cycling to the system.

Let us consider the system (1) with
A ¼
0 1 �1

�0:1526 �4:6688 0
2:2301 0 0:6442

2
64

3
75; G ¼

0
0

30:6748

2
64

3
75;

D ¼
8:0287
�11:7230
�14:7670

2
64

3
75; B ¼

0
8:3841

0

2
64

3
75; E ¼

9:6344
�14:0676
�17:7204

2
64

3
75;

H ¼ ½0 0 1�; C ¼ ½1 0 0�; UðxÞ ¼ 2 sin x2; u ¼ 2:
The set-valued mapping qðkÞ is the Coulomb friction and given by
qðkÞ ¼
½0:1642þ 0:0603ð1� 2

1þe5:7468jkjÞ
�0:2267ð1� 2

1þe0:2941jkjÞ�signðkÞ þ 0:0319k; k – 0;
�0:1642;0:1642½ �; k ¼ 0:

8><
>:
The figure of qðkÞ is shown in Fig. 1.
It is known from [4] that when UðxÞ ¼ uf ¼ 0, the model stands for the rotor system (after loop transformation). In the

model, the states are defined as
x1 ¼ hu � hl; x2 ¼ _hu; x3 ¼ _hl;
where hu and hl are the angular positions of the upper and lower discs, respectively, and u is the input voltage.
In order to show that our design method is effective for the Lur’e DI system, we add UðxÞ and uf to the original model.

Solving the LMEs (3)–(6) yields
Fig. 1. The figure of the friction law qðkÞ.
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P ¼
0:6745 0:1052 0:0600
0:1052 0:0721 0
0:0600 0 0:0326

2
64

3
75; Q ¼

0:4346 0 0
0 0:4624 0:0452
0 0:0452 0:0779

2
64

3
75;
L ¼
2:7277
�1:5888
�22:2963

2
64

3
75; F ¼ �1:8393; M ¼ 3:2969; N ¼ 3:9562:
Firstly, we present the adaptive full-order observer to detect the fault. The adaptive full-order observer for the system
(1) is
_̂x1 ¼ x̂2 � x̂3 þ 8:0287Uðx̂2Þ þ 2:7280ðy� x̂1Þ þ 13:2349b̂ðy� x1Þ;
_̂x2 ¼ �0:1526x̂1 � 4:6688x̂2 � 11:7230Uðx̂2Þ

þ8:3841u� 1:5898ðy� x̂1Þ � 19:3248b̂ðy� x1Þ;
_̂x3 ¼ 2:2301x̂1 þ 0:6442x̂3 þ 30:6748x̂� 14:7670Uðx̂2Þ

�22:2970ðy� x̂1Þ � 24:3427b̂ðy� x1Þ;

x̂ 2 �qðx̂3 � 1:8393ðy� x̂1ÞÞ;
_̂b ¼ 0:01½3:2969ðy� x̂1Þ�2:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð41Þ
The initial states of the systems (1) and (41) are chosen as ½0 0 0�T and ½1 0:1 0:3�T , and the initial value of b̂ is 1. When
uf ¼ 0, Fig. 2 shows that the errors e1; e2 and e3 of the error system (9) converge to zero asymptotically. When uf – 0 and is
defined as
uf ¼

5; 20 6 t < 30;

6; 40 6 t < 50;

5:5; 80 6 t < 90;

0; else:

8>>>><
>>>>:
We detect the occurrence of the fault by (21), where the alarm threshold l ¼ 0:3. From Fig. 3, we see that the alarm device
works during the time intervals ½20;30�; ½40;50� and ½80;90�, which is in accordance with the expression of uf .
0 2 4 6 8 10 12 14 16 18 20
−2

−1.5

−1

−0.5

0

0.5

t/sec

e1
e2
e3

Fig. 2. The response of the errors e1; e2 and e3 of the full-order error system when no fault occurs.
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Secondly, we design the reduced-order observer and estimate the fault. The reduced-order observer for the
system (1) is
_̂z1 ¼ �3:2097ẑ1 � 1:4591ẑ2 þ 8:3841uþ 7:2161y;
_̂z2 ¼ �1:8405ẑ1 � 1:1963ẑ2 þ 30:6748x̂þ 1:7464y;

x̂ 2 �qðẑ2 � 1:8405yÞ;
x̂2 ¼ ẑ1 � 1:4591y;

x̂3 ¼ ẑ2 � 1:8405y:

8>>>>>><
>>>>>>:

ð42Þ
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Fig. 4. The response of the errors er2 and er3.



0 2 4 6 8 10 12 14 16 18 20
−4

−3

−2

−1

0

1

2

3

t/sec

uf
estimation of uf

Fig. 5. The response of the fault uf and the estimation ûf .
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The fault uf in system (1) is chosen as
uf ¼

2 sin t; 0 6 t < 5;
2; 5 6 t < 10;
�1:5 cos t; 10 6 t < 15;
�3; else:

8>>><
>>>:
The initial state of (42) is ½ẑ1ð0Þ; ẑ2ð0Þ� ¼ ½2;3�T . Denote that er2 ¼ x̂2 � x2 and er3 ¼ x̂3 � x3. Fig. 4 shows the reduced-order
observer works well. Then, using (40), we reconstruct uf ðtÞ, which is shown in Fig. 5. From the simulation results, we con-
clude that our design method is valid.

6. Conclusion

We consider the actuator fault detection and estimation for the Lur’e DI system. Firstly, we use an adaptive full-order ob-
server to detect the actuator fault. Then, we reconstruct the actuator fault by a reduced-order observer. Finally, we give an
example of rotor system to show the effectiveness of the design method.
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