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Abstract: By coding a query sample as a sparse linear combination of all training samples and then 

classifying it by evaluating which class leads to the minimal coding residual, sparse representation based 

classification (SRC) leads to interesting results for robust face recognition. It is widely believed that the l1-

norm sparsity constraint on coding coefficients plays a key role in the success of SRC, while its use of all 

training samples to collaboratively represent the query sample is rather ignored. In this paper we discuss 

how SRC works, and show that the collaborative representation mechanism used in SRC is much more 

crucial to its success of face classification. The SRC is a special case of collaborative representation based 

classification (CRC), which has various instantiations by applying different norms to the coding residual and 

coding coefficient. More specifically, the l1 or l2 norm characterization of coding residual is related to the 

robustness of CRC to outlier facial pixels, while the l1 or l2 norm characterization of coding coefficient is 

related to the degree of discrimination of facial features. Extensive experiments were conducted to verify the 

face recognition performance of CRC with different instantiations. 
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1. Introduction 

It has been found that natural images can be coded by a small number of structural primitives which are 

qualitatively similar in form to simple cell receptive fields [1-2]. In the past decade, the sparse coding or 

sparse representation methods have been rapidly developed. Sparse representation codes a signal y over an 

over-complete dictionary Φ such that y≈Φα and α is a sparse vector. The sparsity of α is often characterized 

by l1-norm, leading to the sparse coding model: 1
minα α  s.t. 2

ε− ≤y Φα , where ε is a small constant [7-

9]. The successful applications of sparse representation include image restoration [3-6], compressive sensing 

[10], morphological component analysis [11], and super-resolution [12-13], etc.    

The great success of sparse representation in image reconstruction triggers the research on sparse 

representation based pattern classification. The basic idea is to code the test sample over a dictionary with 

sparsity constraint, and then classify it based on the coding vector. Huang and Aviyente [14] sparsely coded 

a signal over a set of predefined redundant bases and used the coding vector as features for classification. 

Rodriguez and Sapiro [15] learned a discriminative dictionary to code the image for classification. In [16], 

Wright et al. proposed a very interesting method, namely sparse representation based classification (SRC), 

for face recognition (FR). Denote by Xi ∈ℜm×n the set of training samples from class i (each column of Xi is 

a sample). Suppose that we have K classes of subjects, and let X = [X1, X2, …, XK]. For a query face image 

y∈ℜm, it is coded over X as y≈Xα, where α=[α1;…,αi;…; αK] and αi is the sub-vector associated with Xi. If 

y is from class i, usually y≈Xiαi holds well, implying that most coefficients in αk, k≠i, are small and only αi 

has significant values. That is, the sparse non-zero entries in α can encode the identity of y. The procedures 

of standard SRC are summarized in Table 1. 

 
Table 1: The standard SRC Algorithm 

1. Normalize the columns of X to have unit l2-norm. 
2. Code y over X via l1-norm minimization 

{ }2

2 1
ˆ arg min λ= − +y Xαα α α                                  (1) 

where λ is a positive scalar. 
3. Compute the residuals 

2
ˆi i ir = −y X α                                                 (2) 

where ˆiα  is the coefficient vector associated with class i. 
4. Output the identity of  y as 

( ) { }identity arg min i ir=y                                      (3) 
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We denote by S-SRC the standard SRC scheme described in Table 1. When y is occluded or corrupted, 

Wright et al. [16] used the identity matrix I as an additional dictionary to code the outlier pixels, i.e., 

[ ][ ] [ ]{ }2
, 2 1

ˆ arg min , ; ;λ= − +y X Ια βα α β α β . It can be seen that this coding model is equivalent to 

{ }1 1
ˆ arg min λ= − +y Xαα α α ; that is, the coding residual is also characterized by l1-norm to achieve 

robustness to outliers. We denote by R-SRC this robust SRC scheme to deal with occlusions and corruption.  

SRC (including S-SRC and R-SRC) shows very interesting robust FR performance, and it boosts much 

the research of sparsity based pattern classification. Inspired by SRC, Gao et al. [17] proposed the kernel 

sparse representation for FR, while Yang and Zhang [18] learned a Gabor occlusion dictionary to reduce 

significantly the computational cost when dealing with face occlusion. Cheng et al. [19] constructed the l1-

graph for image classification, while Qiao et al. [20] learned a subspace to preserve the l1-graph for FR. In 

[21], Yang et al. combined sparse coding with linear pyramid matching for image classification. In SRC, it 

is assumed that face images are aligned, and methods have also been proposed to solve the misalignment or 

pose change problem. For example, the method in [22] is invariant to image-plane transformation, and the 

method in [23] was designed to deal with misalignment and illumination variations. Peng et al. [24] used 

low-rank decomposition to align a batch of linearly correlated images with gross corruption. In addition, 

dictionary learning methods [25-28] were also developed to enhance SRC based pattern classification.   

The l1-minimization required in sparsity based pattern classification can be time consuming. Many fast 

algorithms have been proposed to speed up the l1-minimization process [29-36]. As reviewed in [31], there 

are five representative fast l1-norm minimization approaches, namely, Gradient Projection, Homotopy, 

Iterative Shrinkage-Thresholding, Proximal Gradient, and Augmented Lagrange Multiplier (ALM). It was 

indicated in [31] that for noisy data, the first order l1-minimization techniques (e.g., SpaRSA [32], FISTA 

[33], and ALM [34]) are more efficient, while in the application of FR, Homotopy [35], ALM and l1_ls [36] 

are better for their good accuracy and fast speed.  

Though SRC has been widely studied in the FR community, its working mechanism is not fully revealed 

yet. The role of l1-sparsity is often emphasized, and many works aim to improve the l1-regularization on 

coding vector α. For examples, Liu et al. [37] added a nonnegative constraint to α; Gao et al. [38] 

introduced a Laplacian term of α in sparse coding; Yuan and Yan [39] used joint sparse representation to 

code multiple types of image features; and Elhamifar and Vidal [40] used structured sparse representation 
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for robust classification. All these works stress the role of l1-sparsity of α in classification. However, the use 

of training samples from all classes to represent the query sample y in SRC is rather ignored. Some recent 

works [41-42] have questioned the role of sparsity in pattern classification. Berkes et al. [41] argued that 

there is no clear evidence for active sparsification in the visual cortex. In our previous work [42], it is shown 

that the use of collaborative representation is more crucial than the l1-sparsity of α to FR, and the l2-norm 

regularization on α can do a similar job to l1-norm regularization but with much less computational cost.   

The SRC classifier has a close relationship to the nearest classifiers, including the nearest neighbor (NN), 

nearest feature line (NFL) [43], nearest feature plane (NFP) [44], local subspace (LS) [45] and nearest 

subspace (NS) [44][46-48]. The NN, NFL and NSP classifiers use one, two and three training samples of 

each class, respectively, to represent the query image y, while the LS and NS classifiers represent y by all the 

training samples of each class. Like these nearest classifiers, SRC also represents y as the linear combination 

of training samples; however, one critical difference is that SRC represents y by the training samples from 

all classes, while the nearest classifiers represent y by each individual class. The use of all classes to 

collaboratively represent y alleviates much the small-sample-size problem in FR, especially when the 

number of training samples per class is small. 

In this paper, we discuss in detail the collaborative representation nature of SRC. Compare with our 

previous work in [42], in this paper we present a more general model, namely collaborative representation 

based classification (CRC), make deeper analysis on the l1/l2-norm regularization of coding coefficients, and 

conduct more experiments. By using l1-norm or l2-norm to characterize the coding vector α and the coding 

residual e=y−Xα, we can have different instantiations of CRC, while S-SRC and R-SRC are special cases of 

CRC. The l1- or l2-norm characterization of e is related to the robustness of CRC to outlier pixels, while the 

l1- or l2-norm characterization of α is related to the discrimination of facial feature y. When the face image is 

not occluded/corrupted, l2-norm is good enough to model e; when the face image is occluded/corrupted, l1-

norm is more robust to model e. The discrimination of facial feature y is often related to its dimensionality. 

If the dimensionality and the discrimination of y is high, the coding coefficients α will be naturally sparse 

and concentrate on the samples whose class label is the same as y, no matter l1- or l2-norm is used to 

regularize α. When the dimensionality of y is too low, often the discrimination power of y will be much 

reduced, and the distribution of α will be less sparse since some big coefficients can be generated and 
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assigned to samples whose class labels are different from y. In this case, the l1-norm regularization on α will 

enforce α to be sparse, and consequently enhance its discrimination power.  

The rest of this paper is organized as follows. Section 2 discusses the role of sparsity in face 

representation and classification. Section 3 discusses in detail the CRC scheme. Section 4 conducts 

extensive experiments to demonstrate the performance of CRC, and Section 5 concludes the paper. 

 

2. The Role of Sparsity in Representation based Face Recognition   

As shown in Table 1, there are two key points in SRC [16]: (i) the coding vector α is enforced to be sparse 

and (ii) the coding of query sample y is performed over the whole dataset X instead of each subset Xi. It was 

stated in [16] that the sparsest (or the most compact) representation of y over X is naturally discriminative 

and can indicate the identity of y. The SRC is a generalization and significant extension of classical nearest 

classifiers such as NN and NS by representing y collaboratively across classes. But there are some issues not 

very clear yet: is it the sparsity constraint on α that makes the representation more discriminative, and must 

we use l1-sparsity to this end? 

Denote by Φ∈ℜm×n a dictionary of bases (atoms). If Φ is complete, then any signal x∈ℜm can be 

accurately represented as the linear combination of the atoms in Φ.  If Φ is orthogonal and complete, 

however, often we need to use many atoms from Φ to faithfully represent x. If we want to use less atoms to 

represent x, we must relax the orthogonality requirement on Φ. In other words, more atoms should be 

involved in Φ so that we have more choices to represent x, leading to an over-complete and redundant 

dictionary Φ but a sparser representation of x. The great success of sparse representation in image 

restoration [3-6] validates that a redundant dictionary can have more powerful capability to reconstruct the 

signal.  

In the scenario of FR, each class of face images often lies in a small subspace of ℜm. That is, the m-

dimensional face image x can be characterized by a code of much lower dimensionality. Let’s take the 

training samples of class i, i.e., Xi, as the dictionary of this class. In practice the atoms (i.e., the training 

samples) of Xi will be correlated. Assume that we have enough training samples of each class and all the 

face images of class i can be faithfully represented by Xi, then Xi can be viewed as an over-complete 
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dictionary2 because of the correlation of training samples of class i. Therefore, we can conclude that a test 

sample y of class i can be sparsely represented by dictionary Xi.      

Another important fact in FR is that human faces are all somewhat similar, and some subjects may have 

very similar face images. Dictionary Xi of class i and dictionary Xj of class j are not incoherent; instead, they 

can be highly correlated. Using the NS classifier, for a query sample y from class i, we can find (by least 

square method) a coding vector αi such that 2

2
arg mini i= −y Xαα α . Let ri = y − Xiαi. Similarly, if we 

represent y by class j, there is 2

2
arg minj j= −y Xαα α  and we let rj = y − Xjαj. For the convenience of 

discussion, we assume that Xi and Xj have the same number of atoms, i.e., Xi, Xj∈ℜm×n. Let Xj = Xi +Δ. 

When Xi and Xj are very similar, Δ can be very small such that 
1

( )
( )

n iF

i iF

σξ
σ

= ≤
Δ X
X X

, where σ1(Xi) and σn(Xi) 

are the largest and smallest eigenvalues of Xi, respectively. Then we can have the following relationship 

between ri and rj (Theorem 5.3.1, page 242, [49]): 

( ) { } ( )22
2

2

1 ( ) min 1,j i
i m nξ κ Ο ξ

−
≤ + − +

r r
X

y
                                        (4) 

where κ2(Xi) is the l2-norm conditional number of Xi. From Eq. (4), we can see that if Δ is very small, the 

distance between ri and rj will also be very small. This makes the classification very unstable because some 

small disturbance (e.g., noise or small deformation) can make ||rj||2<||ri||2, leading to a wrong classification.  

The above problem can be alleviated by regularization on αi and αj. The reason is very intuitive. Take 

the l0-norm sparsity regularization as an example, if y is from class i, it is more likely that we can use only a 

few samples, e.g., 5 or 6 samples, in Xi to represent y with a good accuracy. In contrast, we may need more 

samples, e.g., 8 or 9 samples, in Xj to represent y with nearly the same representation accuracy. With the 

sparsity constraint or other regularizer, the representation error of y by Xi will be visibly lower than that by 

Xj, making the classification of y easier. Here let’s consider three regularizers: the sparse regularizers by l0-

norm and l1-norm, and the least square regularizer by l2-norm.  

 

                                                            
2More strictly speaking, it should be the dimensionality reduced dictionary of Xi that is over-complete. For the convenience of 
expression, we simply use Xi in the development.   



7 
 

  
(a) 

 
(b) 

 
(c) 

 
Figure 1:  An example of class-specific face representation. (a) The query face image (left: original image; right: the 
one after histogram equalization for better visualization); (b) some training samples from the class of the query image; 
(c) some training samples from another class. 

 

 
(a) 

  
(b)                                                                                (c) 

Figure 2: The curve of representation residual versus the lp-norm of representation coefficients. (a) p=0, (b) p=1, and (c) 
p=2. 

 

By lp-regularization, p = 0, 1, or 2, the representation of y over dictionary Φ can be formulated as 

2

2
ˆ arg min s.t.

pl
ε= − ≤yαα Φα α                                                  (5) 

where ε is a small positive number. Let 2
ˆr = −y Φα . We could plot the curve of “r vs. ε” to illustrate how 

regularization improves discrimination. Fig. 1(a) shows a test face image of class 32 in the Extended Yale B 
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database [46][50]. Some training samples of this class are shown in Fig. 1(b), while some training samples 

of class 5, which is similar to class 32, are shown in Fig. 1(c). We use the training samples of the two classes 

as dictionaries to represent, respectively, the query sample in Fig. 1(a) via Eq. (5). The “r vs. ε” curves for p 

= 0, 1, and 2 are drawn in Figs. 2 (a)~(c), respectively. For the l0-norm regularization, we used the 

Orthogonal Matching Pursuit (OMP) algorithm [51] to solve Eq. (5); for the l1-norm regularization, we used 

the l1_ls algorithm [36]; while for l2-norm regularization, the regularized least square was used to get an 

analytical solution to Eq. (5). 

From Fig. 2(a), one can see that when only a few training samples (e.g., less than 3 samples) are used to 

represent the query sample, both the two classes have big representation error. In practice, the system will 

consider this sample as an imposter and directly reject it. When more and more training samples are 

involved, the representation residual r decreases. However, the ability of r to discriminate the two classes 

will also reduce if too many samples (e.g., more than 10 samples) are used to represent the query sample. 

This is because the two classes are similar so that the dictionary of one class can represent the samples of 

another class if enough training samples are available (i.e., the dictionary is nearly over-complete). With 

these observations, one can conclude that a query sample should be classified to the class which could 

faithfully represent it using fewer samples. In other words, the l0-norm sparse regularization on α can 

improve the discrimination of representation based classification. 

Now the question is: can the weaker l1-regularization, and even the non-sparse l2-regularization, do a 

similar job? Fig. 2(b) and Fig. 2(c) give the answer. We can see that when ε is big (ε > 8), which means that 

the regularization is weak, both the two classes have very low reconstruction residual, making the 

classification very unstable. By setting a smaller ε, the l1-norm or l2-norm regularization on α will lead to a 

discriminative reconstruction residual, by which the query sample can be correctly classified. From this 

example, one can see that the non-sparse l2-norm regularization can play a similar role to the sparse l0-norm 

or l1-norm regularization in enhancing the discrimination of representation.     

Remark (regularized nearest subspace, RNS): The above observations imply a regularized nearest 

subspace (RNS) scheme for FR when the number of training samples of each class is big. That is, we can 

represent the query sample y class by class, and classify it based on the representation residual and 

regularization strength. Since l0-norm minimization is combinatorial and NP-hard, it is more practical to use 
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l1-norm or l2-norm to regularize the representation coefficients. Using the Lagrangian formulation, we have 

the objective function of RNS-lp as: 

{ }2

2
ˆ arg min

pl
λ= − +yαα Φα α                                                      (6) 

where p = 1 or 2 and λ is a positive constant. For each class Xi, we could obtain its representation vector ˆiα  

of y by taking Φ as Xi in Eq. (6). Denote by 2

2
ˆ ˆ

p
i i i i l

r λ= − +y X α α , and we can then classify y by 

( ) { }identity arg min i ir=y . 

 

3. Collaborative Representation based Classification (CRC) 

In Section 2, it is assumed that each class has enough training samples. Unfortunately, FR is a typical small-

sample-size problem, and Xi is under-complete in general. If we use Xi to represent y, the representation 

residual ri can be big even when y is from class i. This problem can be overcome if more samples of class i 

can be used to represent y, yet the problem is how to find the additional samples. Fortunately, one fact in FR 

is that the face images of different people share certain similarities, and some subjects, say subject i and 

subject j, can be very similar so that the samples from class j can be used to represent the test sample of class 

i. In other words, one class can borrow samples from other classes in order to faithfully represent the query 

sample. Such a strategy is very similar to the nonlocal technique widely used in image restoration [52-54], 

where for a given local patch the many similar patches to it are collected throughout the image to help the 

reconstruction of the given patch. In the scenario of FR, for each class we may consider the samples from 

similar classes as the “nonlocal samples” and use them to better represent the query sample.   

However, such a “nonlocal” strategy has some problems to implement under the scenario of FR. First, 

how to find the “nonlocal” samples for each class is itself a nontrivial problem. Note that here our goal is 

face classification but not face reconstruction, and using the Euclidian/cosine distance to identify the 

nonlocal samples may not be effective. Second, by introducing the nonlocal samples to represent the query 

sample, all the classes will have a smaller representation residual, and thus the discrimination of 

representation residual can be reduced, making the classification harder. Third, such a strategy can be 

computationally expensive because for each class we need to identify the nonlocal samples and calculate the 

representation of the test sample.  
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In SRC [16] this “lack of samples” problem is solved by using the collaborative representation strategy, 

i.e., coding the query image y over the samples from all classes X = [X1, X2, …, XK] as y≈Xα. Such a 

collaborative representation strategy simply takes the face images from all the other classes as the nonlocal 

samples of one class. Though this strategy is very simple, there are two points need to be stressed. First, the 

searching for nonlocal samples of each class can be avoided. Second, all the classes share one common 

representation of the query sample, and thus the conventional representation residual based classification 

procedure used in NN and NS classifiers cannot be used.  

Though we call the representation of y by X “collaborative representation”, we have no objection if 

anyone would like to call it “competitive representation”, because each class will contribute competitively to 

represent y. If one class contributes more, this means that other classes will contribute less. In this face 

representation problem, “collaboration” and “competition” are the two sides of the same coin. Therefore, 

one intuitive but very effective classification rule is to check which class contributes the most in the 

collaborative representation of y, or equivalently which class has the least reconstruction residual. We call 

this classification scheme the collaborative representation based classification (CRC). 

 

3.1. Discussions on collaborative representation based classification 

After collaboratively represent y using Eq. (1), SRC classifies y by checking the representation residual class 

by class using Eqs. (2) and (3). To simplify the analysis, let’s remove the l1-regularization term in Eq. (1), 

and the representation becomes the least square problem: { } { }
2

2
ˆ min

ii i ii
= −∑y Xαα α . Refer to Fig. 3, the 

resolved representation ŷ ˆi ii
= ∑ X α  is the perpendicular projection of y onto the space spanned by X. The 

reconstruction residual by each class is 2

2
ˆi i ir = −y X α . It can be readily derived that 

2

2
ˆi i ir = −y X α 2

2
ˆ= −y y 2

2
ˆ ˆi i+ −y X α  

Obviously, when we use ri to determine the identity of y, it is the amount  

2*
2

ˆ ˆi i ir = −y X α                                                                      (7) 

that works for classification because 2

2
ˆ−y y  is a constant for all classes.  

From a geometric viewpoint, we can write *
ir  as  
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( )
( )

2 2
2*

2

ˆ ˆsin , || ||
sin ,

i
i

i i

r =
y χ y
χ χ

                                                                  (8) 

where ˆi i i=χ X α  is a vector in the space spanned by Xi, and ˆi j jj i≠
= ∑χ X α  is a vector in the space spanned 

by all the other classes Xj, j≠i. Eq. (8) shows that by using CRC, when we judge if y belongs to class i, we 

will not only consider if the angle between ŷ  and iχ  is small (i.e., if ( )ˆsin , iy χ  is small), but also consider 

if the angle between iχ  and iχ  is big (i.e., if ( )sin ,i iχ χ  is big). Such a “double checking” mechanism 

makes the CRC effective and robust for classification.  

 

 

Figure 3: Illustration of collaborative representation based classification. 

 

When the number of classes is too big, the number of atoms in dictionary X = [X1, X2, …, XK] will be 

big so that the least square solution { } { }
2

2
ˆ min

ii i ii
= −∑y Xαα α  can become unstable. This problem can be 

solved by regularization. In SRC, the l1-sparsity constraint is imposed on α to regularize the solution. 

However, the l1-minimization is time consuming. As we will see in the section of experimental results, by 

using l2-norm to regularize the solution of α, we can have similar FR results to those by l1- regularization but 

with significantly less complexity, implying that the collaborative representation plays a more important role 

than the l1-norm regularization in the application of FR. 

 

3.2. General model of collaborative representation 

The coding of a query image y over the dictionary X can be written as y=x+e, where x≈Xα is the component 

y- ŷ  y 

Angle between ŷ and χi  

iχ  

ri 

χi 

ŷ  
ˆ ˆi i−y X α

The space spanned by X 

Angle between χi and iχ  
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we want to recover from y for classification use and e is the residual (e.g., noise, occlusion and corruption). 

A general model of collaborative representation is:  

{ }ˆ arg min
q pl l

λ= − +y Xαα α α                                                    (9) 

where  λ is the regularization parameter and p, q = 1 or 2. Different settings of p and q lead to different 

instantiations of the collaborative representation model. For example, in SRC [16] p is set as 1 while q is set 

as 1 or 2 to handle face recognition with and without occlusion/corruption, respectively.  

Different from image restoration, where the goal is to faithfully reconstruct the signal from the noisy 

and/or incomplete observation, in CRC the goal is twofold. First, we want to recover the desired signal x 

from y with the resolved coding vector α̂  (i.e., x=X α̂ ) such that in x the noise and trivial information can 

be suppressed. Second, in order for an accurate classification, the coding vector α̂  should be sparse enough 

so that the identity of y can be easily identified. The question is how to set p and q in Eq. (9) to achieve the 

above goals with a reasonable degree of computational complexity.     

In the case that there is no occlusion/corruption in y (the case that y is occluded/corrupted will be 

discussed in sub-section 3.4), we may assume that the observed image y contains some additive Gaussian 

noise. Under such an assumption, it is known that the l2-norm should be used to characterize the data fidelity 

term in Eq. (9) in order for a maximum a posterior (MAP) estimation of x [13]. Thus we set q=2. Let’s then 

discuss the regularization term in Eq. (9). Most of the previous works [16-19] such as SRC impose l1-

regularization on α, and it is believed that the l1-regularization makes the coding vector α̂  sparse. In order 

to investigate the role of l1-regularization on α, let’s conduct some experiments to plot the distribution of α̂ .  

We use the Extended Yale B and AR databases to perform the experiments. The training samples (1216 

samples in Extended Yale B and 700 samples in AR) are used as the dictionary X. The PCA is used to 

reduce the dimensionality of face images. For each test sample y, it is coded over X, and the coding vector 

calculated from all the test samples are used to draw the histogram of α̂ . In the first experiment, we reduce 

the dimensionality of face images to 800 for Extended Yale B and 500 for AR. Then the dictionaries X for 

the two databases are of size 800×1216 and 500×700, respectively. Since both the two systems are under-

determined, we calculate the coding vector by least-square method but with a weak regularization: 



13 
 

( ) 1
ˆ 0.0001T T−
= + ⋅X X Ι X yα . In Figs. 4(a) and 4(b) we draw the histograms of α̂  for the two databases, as 

well as the fitted curves of them by using Gaussian and Laplacian functions.  

 
(a)                                                                            (b) 

 
(c)                                                                             (d) 

 
Figure 4: The histograms (in red) of the coding coefficients and the fitted curves of them by using Gaussian (in green) 
and Laplacian (in blue) functions. (a) and (b) show the curves for AR (dimension: 500) and Extended Yale B 
(dimension: 800) databases, respectively, while (c) and (d) show the curves when the feature dimension is 50. 

 
 

      
(a)                                                                                      (b) 

Figure 5: The Kullback-Leibler divergences between the coding coefficient histograms and the fitted curves (by 
Gaussian and Laplacian distributions) under different feature dimensions. (a) AR; and (b) Extended Yale B. 
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From Figs. 4(a) and 4(b), we can see that the distribution of α̂  can be much better fitted as Laplacian 

than Gaussian. The Kullback-Leibler divergences between the histograms and the fitted curves are 0.0223 

by Gaussian and 0.0172 by Laplacian for the AR database, and 0.1071 by Gaussian and 0.0076 by Laplacian 

for the Extended Yale B database. It can be seen that via collaborative representation the distribution of α̂  

naturally and passively tends to be sparse (i.e., Laplacian) even without l1-regularization. This is because 

when the dimension of face feature y is relatively high (e.g., 500), usually the discrimination of y is also high 

so that only a few training samples, mostly from the same class as y, are involved to code it. This leads to a 

natural sparse representation of y. 

We then reduce the face feature dimensionality to 50 by PCA, and draw in Figs. 4(c) and 4(d) the 

histograms of α̂  as well as the fitted curves of them. It can be found that the accuracy of Laplacian fitting is 

reduced (the Kullback-Leibler divergences are 0.0264 for the AR database and 0.0152 for the Extended Yale 

B database), while the Gaussian fitting of the histogram is much improved (the Kullback-Leibler 

divergences are 0.0231 for the AR database and 0.0820 for the Extended Yale B database). This is because 

when the dimension of the face feature y is low (e.g., 50), the discrimination of y will be much decreased so 

that quite a few training samples from various classes will be involved to code y. This makes the 

representation of y much less sparse, and raises the difficulty to correctly identify y.     

For a more comprehensive observation of the relationship between the dimensionality of y and the 

sparsity of coding coefficient α, in Fig. 5 we show the Kullback-Leibler divergences between the coding 

coefficient histograms and the fitted Gaussian and Laplacian functions under various feature dimensions. 

Clearly, with the increase of feature dimensionality, the fitting error by Laplacian function decreases, 

implying that the increase of feature discrimination can naturally force the coding coefficients to be sparsely 

distributed. In such case, it is not necessary to further regularize α by using the expensive l1-norm 

regularization. However, with the decrease of feature dimensionality, the discrimination power of the feature 

vector will also decrease, and the distribution of α becomes less sparse. In this case, we may need to impose 

l1-regularization on α to actively sparsify α and thus enhance the classification accuracy. Our experiments in 

Section 4 will also validate the above analyses.  
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3.3. CRC with regularized least square 

In practical FR systems, usually the feature dimensionality will not be set too low in order for a good 

recognition rate. Therefore, we may not need to use l1-regularization to sparsify α. Considering that the 

dictionary X can be under-determined, we use ||α||2 to regularize the solution of Eq. (9), leading to the 

following regularized least square (RLS) instantiation of collaborative representation:  

{ }2 2

2 2
ˆ arg min λ= − +y Xαα α α                                                   (10) 

The role of l2-regularization term ||α||2 is two-folds. First, it makes the least square solution stable, 

particularly when X is under-determined; second, it introduces a certain amount of sparsity to α̂ , yet this 

sparsity is much weaker than that by l1-regularization. 

The solution of RLS based collaborative representation in Eq. (10) can be analytically derived as ˆ = Pyα , 

where ( ) 1T Tλ
−

= + ⋅P X X Ι X . Clearly, P is independent of y so that it can be pre-calculated. Once a query 

sample y comes, we can simply project y onto P via Py. This makes the coding very fast. The classification 

by α̂  is similar to that in SRC (refer to Table 1 please). In addition to use the class-specified representation 

residual 
2

ˆi i−y X α  for classification, where ˆiα  is the coding vector associated with class i, the l2-norm 

“sparsity” 
2

ˆ iα  also brings some discrimination information. We propose to use both of them in the 

decision making. (Based on our experiments, this improves slightly the classification accuracy over that by 

using only 
2

ˆi i−y X α .) The proposed CRC algorithm via RLS (CRC-RLS) is summarized in Table 2.  

 
 

Table 2: The CRC-RLS Algorithm 

1. Normalize the columns of X to have unit l2-norm. 
2. Code y over X by 

ˆ = Pyα                                                      (11) 

where ( ) 1T Tλ
−

= + ⋅P X X Ι X . 

3. Compute the regularized residuals 

2 2
ˆ ˆi i i ir = −y X α α                                         (12) 

4. Output the identity of  y as 
( ) { }identity arg min i ir=y                                     (13) 
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When a new subject is enrolled, the dictionary X should be updated as X = [Xo Xn], where Xo is the 

original training data matrix and Xn is composed of the training samples of the new subject. The projection 

matrix P should also be recomputed as ( ) 1T Tλ
−

= + ⋅P X X Ι X  with the updated dictionary X. 

3.4. Robust CRC (R-CRC) to occlusion/corruption 

In Section 3.3, we discussed FR without face occlusion/corruption and used l2-norm to model the coding 

residual. However, when there are outliers (e.g., occlusions and corruptions) in the query face images, using 

l1-norm to measure the representation fidelity is more robust than l2-norm because l1-norm could tolerate the 

outliers. In the robust version of SRC (R-SRC), the l1-norm is used to measure the coding residual for 

robustness to occlusions/corruptions. In CRC, we could also adopt l1-norm to measure the coding residual, 

leading to the robust CRC (R-CRC) model: 

{ }2

1 2
ˆ arg min λ= − +y Xαα α α                                                     (14) 

Let e=y−Xα. Eq. (14) can be re-written as 

{ }2

1 2
ˆ arg min λ= +eαα α  s.t. y=Xα+e                                              (15) 

Eq. (15) is a constrained convex optimization problem which can be efficiently solved by the Augmented 

Lagrange Multiplier (ALM) method [55, 56]. The corresponding augmented Lagrangian function is 

( ) 2 2

1 2 2
, , ,

2
Lμ

μλ= + + − − + − −e z e z y X e y X eα α α α                                   (16) 

where μ>0 is a constant that determines the penalty for large representation error, and z is a vector of 

Lagrange multiplier. The ALM algorithm iteratively estimates the Lagrange multiplier and the optimal 

solution by iteratively minimizing the augmented Lagrangian function 

( ) ( )1 1 ,, arg min , ,
kk k kLμ+ + = ee e zαα α                                                  (17) 

( )1k k kμ+ = + − −z z y X eα                                                           (18) 

The above iteration converges to the optimal solution of Eq. (15) when {μk} is a monotonically increasing 

positive sequence [55]. 

The minimization in the first stage (i.e., Eq. (17)) of the ALM iteration could be implemented by 

alternatively and iteratively updating the two unknowns e and α as follows: 
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( )
( )

1

1 1

arg min , ,

arg min , ,
k

k

k k k

k k k

L

L
μ

μ

+

+ +

=⎧⎪
⎨

=⎪⎩ e

e z

e e z
αα α

α
                                                       (19) 

for which we could have a closed-form solution: 

( ) ( )
[ ]

1

1

1 11

2

k

T T
k k k k k

k k k kS μ

λ μ μ

μ

−

+

+ +

⎧ = + − +⎪
⎨

= − +⎪⎩

X X I X y e z

e y X z

α

α
                                          (20) 

where the function Sα , α≥0, is the shrinkage operator defined component-wise as 

( ) ( ) { }sign max , 0i ii
x xSα α= ⋅ −⎡ ⎤⎣ ⎦x                                                     (21) 

Clearly, ( ) 1
2T T

k kλ μ
−

= +P X X I X  is independent of y for the given μk and thus {Pk} can be pre-

calculated as a set of projection matrices. Once a query sample y comes, in the first stage of ALM we can 

simply project y onto Pk via Pky. This makes the calculation very fast. After solving the representation 

coefficients α and residual e, similar classification strategy to CRC-RLS can be adopted by R-CRC. The 

entire algorithm of R-CRC is summarized in Table 3.  

 

Table 3: The R-CRC Algorithm 

1. Normalize the columns of X to have unit l2-norm. 
2. Code y over X by 
     INPUT: α0, e0 and τ >0. 
     WHILE not converged Do 

      
( ) ( )

[ ]
( )

1

1

1 1

1 1 1

1

2

k

T T
k k k k k

k k k k

k k k k k

S μ

λ μ μ

μ

μ

−

+

+ +

+ + +

= + − +

= − +

= + − −

X X I X y e z

e y X z

z z y X e

α

α

α

 

     End WHILE 
     OUTPUT: α̂  and ê . 
3. Compute the regularized residuals 

2 2
ˆ ˆ ˆi i i ir = − −y X eα α  

4. Output the identity of  y as 
( ) { }identity arg min i ir=y  

 

4. Experimental Results  

In this section, we conduct extensive experiments to evaluate the various instantiations of CRC. We would 

like to stress that the goal of this paper is not to argue that CRC has better FR accuracy than SRC, but rather 

to investigate the roles of sparsity and collaborative representation in FR. SRC itself is an instantiation of 
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CRC by using l1-norm to regularize the coding coefficients and/or to model the coding residual. As in [16], 

in the following experiments it is usually assumed that the face images are already aligned.     

In Sections 4.1~4.4, considering the accuracy and computational efficiency we chose l1_ls [22] to solve 

the l1-regularized SRC scheme. In the experiment of gender classification, the parameter λ of CRC-RLS and 

RNS_lp (p=1 or 2)  is set as 0.08. In FR experiments, when more classes (and thus more samples) are used 

for collaborative representation the least square solution will become more unstable and thus higher 

regularization is required. We set λ as 0.001⋅n/700 for CRC-RLS in all FR experiments, where n is the 

number of training samples. If no specific instruction, for R-CRC we set λ as 1 in FR with occlusion.  

Five benchmark face databases, the Extended Yale B [46] [50], AR [57], Multi-PIE [58], LFW [63] and 

FRGC version 2.0 [61], are used in evaluating CRC and its competing methods, including SRC, SVM, LRC 

[48], and NN. (Note that LRC is an NS based method.) All the experiments were implemented using 

MATLAB on a 3.16 GHz machine with 3.25GB RAM. In Section 4.1, we use examples to discuss the role 

of l1-norm and l2-norm regularizations; in Section 4.2, we use gender classification as an example to 

illustrate that collaborative representation is not necessary when there are enough training samples of each 

class; FR without and with occlusion/corruption are conducted in Section 4.3 and Section 4.4, respectively; 

face validation is conducted in Section 4.5; finally the running time of SRC and CRC is evaluated in Section 

4.6.   

 

4.1. L1-regularization vs. L2-regularization 

In this section, we study the role of sparse regularization in FR by using the Extended Yale B [46][50] and 

AR [57] databases (the experimental setting will be described in Section 4.3). The Eigenfaces with 

dimensionality 300 are used as the input facial features. The dictionary is formed by all the training samples.  

We test the performance of S-SRC (l1-regularized minimization) and CRC-RLS (l2-regularized 

minimization) with different values of regularization parameter λ in Eq. (1) and Eq. (10). The results on the 

AR and Extended Yale B databases are shown in Fig. 6(a) and Fig. 6(b), respectively. We can see that when 

λ=0, both S-SRC and CRC-RLS will fail. When λ is assigned a small positive value, e.g., from 0.000001 to 

0.1, good results can be achieved by S-SRC and CRC-RLS. When λ is too big (e.g., >0.1) the recognition 

rates of both methods fall down. With the increase of λ (>0.000001), no much benefit on recognition rate can 
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be gained. In addition, the l2-regularized minimization (i.e., CRC-RLS) could get similar recognition rates to 

the l1-regularized minimization (i.e., S-SRC) in a broad range of λ. This validates our discussion in Section 

3.2 that the l1-regularization on α is not necessary when the discrimination of face feature is high enough. 

However, when the dimension of facial features is very low, the representation will become very under-

determined, and the FR results by l1-norm and l2-norm regularizations could be substantially different, as 

demonstrated in [60] and discussed in Section 3.2 of this paper. In such case, l1-regularization is helpful to 

get discriminative coefficients for accurate FR. 

Fig. 6(c) plots one query sample’s coding coefficients by S-SRC and CRC-RLS when they achieve their 

best results in the AR database. It can be seen that CRC-RLS has much weaker sparsity than S-SRC; 

however, it achieves no worse FR results. Again, l1-sparsity is not crucial for FR when the facial feature is 

discriminative, while the collaborative representation mechanism in CRC-RLS and S-SRC is very helpful.  

 
(a)                                                                                    (b) 

    
(c)  

 
Figure 6: The recognition rates of S-SRC (l1-regularized minimization) and CRC-RLS (l2-regularized minimization) 
versus the different values of λ on the (a) AR and (b) Extended Yale B databases. The coding coefficients of one query 
sample are plotted in (c).  

 

4.2. Gender classification 

In Section 2, we indicate that when each class has enough number of samples, there is no need to code the 
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query sample over all classes because the subset of each class can form a nearly over-complete dictionary 

already. To validate this claim, we conduct experiments on a two-class separation problem: gender 

classification. We chose a non-occluded subset (14 images per subject) of AR [57], which consists of 50 

male and 50 female subjects. Images of the first 25 males and 25 females were used for training, and the 

remaining images for testing. PCA is used to reduce the dimension of each image to 300. Since there are 

enough training samples in each class, as we discussed in Section 2, the RNS_lp (please refer to Eq. (6) and 

the related explanations) methods could do a good job for this gender classification task. 

We compare RNS_l1 and RNS_l2 with the CRC-RLS, S-SRC, SVM, LRC, and NN methods. The results 

are listed in Table 4. One can see that RNS_l1 and RNS_l2 get the same best results, validating that coding 

on each class is more effective than coding on all classes when the training samples per class are sufficient, 

no matter l1- or l2-regularizaion is used. CRC-RLS gets the second best result, about 1.4% higher than S-

SRC. The nearest subspace method (e.g., LRC) achieves much worse results because wrong class may have 

lower representation residual than correct class without regularization on the coding coefficient. 

By using the above AR dataset as the training set, we then conducted cross-database gender 

classification by using a subset of the Multi-PIE database [58] as the test set. The face images of the first 250 

subjects (including 174 males and 76 females) in Sessions 2, 3, and 4 were employed as the test images. In 

each session, each subject has 10 frontal face images with even number illuminations. The experimental 

results are shown in Table 5. It can be seen that all methods have lower classification rates than those in 

Table 4 because cross-dataset gender classification is more challenging due to the different data collection 

settings and environments. Nevertheless, RNS_l2 achieves the best results in all sessions. RNS_l1 and 

RNS_l2 work better than S-SRC and CRC-RLS, respectively, which again validates that collaborative 

representation is not necessary when there are sufficient training samples of each class. 

 
Table 4: The results of different methods on gender classification using the AR database. 

RNS_l1 RNS_l2 CRC-RLS S-SRC SVM LRC NN 
94.9% 94.9% 93.7% 92.3% 92.4% 27.3% 90.7% 

 
Table 5: The results of different methods on gender classification across the MPIE and AR databases. 

Session RNS_l1 RNS_l2 CRC-RLS S-SRC SVM LRC NN 
Session 2 77.3% 79.6% 78.4% 77.2% 77.9% 28.9% 70.2% 
Session 3 78.0% 80.0% 79.3% 77.9% 76.6% 31.9% 70.6% 
Session 4 79.0% 80.7% 79.5% 77.9%; 78.3% 29.7% 70.3% 
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4.3. Face recognition without occlusion/corruption 

We then test the proposed CRC-RLS method for FR without occlusion/corruption. The Eigenface is used as 

the face feature in these experiments. 

1) Extended Yale B Database: The Extended Yale B [46][50] database contains about 2,414 frontal face 

images of 38 individuals. We used the cropped and normalized face images of size 54×48, which were taken 

under varying illumination conditions. We randomly split the database into two halves. One half, which 

contains 32 images for each person, was used as the dictionary, and the other half was used for testing. Table 

6 shows the recognition rates versus feature dimension by NN, LRC, SVM, S-SRC and CRC-RLS. 

Considering that each class has a good number (about 32) of training samples, here we also report the 

performance of RNS_l2. It can be seen that CRC-RLS and S-SRC achieve very similar recognition rates. 

When the feature dimensionality is relatively high (e.g., 150 and 300), the difference of their recognition 

rates is less than 0.5%. When the feature dimensionality is set very low (e.g., 50), S-SRC will show certain 

advantage over CRC-RLS in terms of recognition rate. This is exactly in accordance with our analysis in 

Section 3.2. RNS_l2 has worse performance than CRC_RLS and SRC although it performs well with 50-

dimension feature. Since in this experiment there are enough training samples per subject, the recognition 

rates of all methods are not bad. 

 
Table 6: The face recognition results of different methods on the Extended Yale B database. 

Dim 50 150 300 
NN 78.5% 90.0% 91.6% 
LRC 93.1% 95.1% 95.9% 
RNS_l2 94.6% 95.8% 96.3% 
SVM 93.4% 96.4% 97.0% 
S-SRC 93.8% 96.8% 97.9% 
CRC-RLS 92.5% 96.3% 97.9% 

 

Table 7: The face recognition results of different methods on the AR database. 

Dim 54 120 300 
NN 68.0% 70.1% 71.3% 
LRC 71.0% 75.4% 76.0% 
SVM 69.4% 74.5% 75.4% 
S-SRC 83.3% 89.5% 93.3% 
CRC-RLS 80.5% 90.0% 93.7% 

 

2) AR database: As in [8], the cropped AR dataset [62][57] (with only illumination and expression 

changes) that contains 50 male subjects and 50 female subjects was used in our experiments. For each 
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subject, the seven images from Session 1 were used for training, with other seven images from Session 2 for 

testing. The images were cropped to 60×43. The comparison of competing methods is given in Table 7. We 

can see that CRC-RLS achieves the best result when the dimensionality is 120 or 300, while it is slightly 

worse than S-SRC when the dimensionality is very low (e.g., 54). This is again in accordance with our 

analysis in Section 3.2. The recognition rates of CRC-RLS and S-SRC are both at least 10% higher than 

other methods. This shows that collaborative representation do improve much face classification accuracy. 

 
3) Multi PIE database: The CMU Multi-PIE database [58] contains images of 337 subjects captured in 

four sessions with simultaneous variations in pose, expression, and illumination. Among these 337 subjects, 

all the 249 subjects in Session 1 were used. For the training set, we used the 14 frontal images with 14 

illuminations 3  and neutral expression. For the test sets, 10 typical even-number frontal images of 

illuminations taken with neutral expressions from Session 2 to Session 4 were used. The dimensionality of 

Eigenface is 300. Table 8 lists the recognition rates in the three tests. The results validate that CRC-RLS and 

S-SRC are the best in accuracy, and they have at least 6% improvement over the other three methods.  

 
Table 8: The face recognition results of different methods on the MPIE database. 

 NN LRC SVM S-SRC CRC-RLS 
S2 86.4% 87.1% 85.2% 93.9% 94.1% 
S3 78.8% 81.9% 78.1% 90.0% 89.3% 
S4 82.3% 84.3% 82.1% 94.0% 93.3% 

 

4) FRGC database: FRGC version 2.0 [61] is a large-scale face database established under uncontrolled 

indoor and outdoor settings. We use a subset (316 subjects having no less than 10 samples) of query face 

image database, which has large lighting and expression variations and image blur, etc. We randomly choose 

9 images per subject as the training set (2844 image in total), with the remaining as the test set (4474 images 

in total). The images were cropped to 128×168. The recognition rates of competing methods under different 

feature dimensions are given in Table 9. CRC_RLS and SRC lead to much better performance than NN, 

LRC and SVM, whose recognition rates almost have little improvement with the increase of feature 

dimension. When the feature dimension is no less than 400, the performance of CRC-RLS is very close to 

SRC, and CRC-RLS outperforms SRC a little in the case of 700-dimension feature. 

 

                                                            
3 Illuminations {0,1,3,4,6,7,8,11,13,14,16,17,18,19}. 
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Table 9: The face recognition results of different methods on the FRGC 2.0 database. 

Dim 100 400 700 
NN 70.9% 73.6% 73.5% 
LRC 83.3% 83.2% 83.1% 
SVM 85.2% 85.4% 85.7% 
SRC 91.2% 95.6% 95.1% 
CRC-RLS 85.2% 95.2% 96.4% 

 
 
To more comprehensively compare CRC-RLS with S-SRC, we plot their recognition rates using higher-

dimensional features on the Extended Yale B, AR and FRGC2.0 databases in Fig 7. One can see that the 

curves of recognition rate become flat as the feature dimension increases, implying that using very high 

dimensional feature does not improve the FR accuracy. It can also be seen that CRC-RLS achieves similar 

performance to S-SRC when the feature dimension is not too low. Especially, on the large scale FRGC 2.0 

database, CRC-RLS consistently outperforms S-SRC when using 700 or higher dimensional features. 

 

 

Figure 7: The comparison of CRC-RLC and S-SRC under different feature dimensions on different databases. 

 
5) LFW database: Labeled Faces in the Wild (LFW) is a large-scale database designed for unconstrained 

FR with variations of pose, illumination, expression, misalignment and occlusion, etc. Two subsets of 
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We use the first 5 samples for training and the remaining samples for testing. Subset 2 consists of 143 

subjects with no less than 11 samples per subject. We use the first 10 samples for training data and the 
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recognition rates of competing methods are shown in Table 10. The recognition rates of all methods are 

much lower than those in the Extended Yale B, AR, Multi-PIE and FRGC databases because LFW database 

has much more uncontrolled variations (e.g.., pose and misalignment). CRC-RLS and S-SRC significantly 

outperform the other methods, while CRC-RLS performs slightly better than S-SRC. 

 
Table 10: The face recognition results of different methods on the LFW database. 

Test NN LRC SVM S-SRC CRC-RLS 
LFW-6 30.2% 33.8% 44.3% 53.5% 54.0% 
LFW-11 45.9% 52.9% 63.0% 75.5% 76.8% 

 
 

4.4. Face recognition with occlusion/corruption 

One important advantage of representation (or coding) based FR methods is their ability to deal with 

occlusion and corruptions. In R-SRC [16], the robustness to face occlusion/corruption is achieved by adding 

an occlusion dictionary (an identity matrix) for sparse coding, or equivalently, using l1-norm to measure the 

coding residual. In Section 3.4, we have correspondingly proposed the robust version of CRC, i.e., R-CRC, 

for FR with occlusion/corruption. In this subsection we test R-CRC in handling different kinds of occlusions, 

including random pixel corruption, random block occlusion and real disguise.  

1) FR with block occlusion: To be identical to the experimental settings in [16], we used Subsets 1 and 2 

(717 images, normal-to-moderate lighting conditions) of the Extended Yale B database for training, and 

used Subset 3 (453 images, more extreme lighting conditions) for testing. The images were resized to 96×84. 

As in [16], we simulate various levels of contiguous occlusion, from 0% to 50%, by replacing a randomly 

located square block of each test image with an unrelated image. The block occlusion of a certain size is 

located on the random position which is unknown to the FR algorithms. Here λ of R-CRC is set as 0.1. The 

results by NN, LRC, S-SRC, R-SRC, CRC-RLS and R-CRC are shown in Table 11. We can see that R-CRC 

outperforms R-SRC in most cases (with 17% improvement in 50% occlusion) except for the case of 30% 

block occlusion. In addition, CRC-RLS achieves much better performance than S-SRC. This is mainly 

because the test sample with block occlusion cannot be well represented by the non-occluded training 

samples with sparse coefficients. In the following experiments, we only report the results of R-SRC in FR 

with corruption or disguise. 
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Table 11: The recognition rates of R-CRC, CRC-RLS, R-SRC and S-SRC under different levels of block occlusion. 

Occlusion 0% 10% 20% 30% 40% 50% 
NN 94.0% 92.9% 85.4% 73.7% 62.9% 45.7% 
LRC 100% 100% 95.8% 81.0% 63.8% 44.8% 
S-SRC 100% 99.6% 93.4% 77.5% 60.9% 45.9% 
R-SRC 100% 100% 99.8% 98.5% 90.3% 65.3% 
CRC-RLS 100% 100% 95.8% 85.7% 72.8% 59.2% 
R-CRC  100% 100% 100% 97.1% 92.3% 82.3% 

 
 

2) FR with pixel corruption: In this part, we test the robustness of R-SRC and R-CRC to pixel 

corruption. We used the same experimental settings as in [16], i.e., Subsets 1 and 2 of Extended Yale B for 

training and Subset 3 for testing. The images were resized to 96×84 pixels. For each test image, we replaced 

a certain percentage of its pixels by uniformly distributed random values within [0, 255]. The corrupted 

pixels were randomly chosen for each test image and the locations are unknown to the algorithm. Table 12 

lists the recognition rates of NN, LRC, R-SRC, CRC-RLS and R-CRC. It can be seen that R-CRC achieves 

equal or better performance (about 13% improvement over R-SRC in 80% corruption) in almost all cases. 

Interestingly, CRC-RLS can also perform well up to 50% pixel corruption. 

 
Table 12: The recognition rates of R-SRC, CRC-RLS and R-CRC under different levels of pixel corruption. 

Corruption 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 
NN 94.0% 96.7% 97.1% 94.5% 85.4% 68.4% 46.8% 25.4% 11.0% 4.6% 
LRC 100% 100% 100% 99.1% 95.6% 80.4% 50.3% 26.0% 9.9% 6.2% 
R-SRC  100% 100% 100% 100% 100% 100% 99.3% 90.7% 37.5% 7.1% 
CRC-RLS 100% 100% 100% 99.8% 98.9% 96.4% 79.9% 45.7% 13.2% 4.2% 
R-CRC 100% 100% 100% 100% 100% 100% 100% 90.5% 51.0% 15.9% 

 

3) FR with real face disguise: As in [16], a subset from the cropped AR database [62] consisting of 

1,200 images from 100 subjects, 50 male and 50 female, is used here. 800 images (about 8 samples per 

subject) of non-occluded frontal views with various facial expressions were used for training, while the 

others with sunglasses and scarves (as shown in Fig. 8) were used for testing. The images were resized to 

83×60. The results of competing methods are shown in Table 13.  

Although CRC-RLS is not designed for robust FR, interestingly it achieves the best result of FR with 

scarf disguise, outperforming SRC by a margin of 31% and R-CRC by 4.5%. (This phenomenon may result 

from the special experimental setting, which will be discussed more in the following FR experiments.) By 

using l1-norm to measure the representation fidelity, R-CRC has the same recognition rate as R-SRC in 

sunglasses disguise, but achieves 26.5% improvement in scarf disguise. As in [16], we also partition the face 
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image into 8 sub-regions for FR. With partition, CRC-RLS and R-CRC can still achieve slightly better 

performance than R-SRC in scarf disguise, but perform a little worse in sunglass disguise. This is because 

that for each partitioned face portion its discrimination is limited so that the l1-regularization is helpful to 

improve the sparsity of coding vector and consequently improve the classification accuracy. Nevertheless, 

the recognition rates of CRC-RLS and R-CRC are very competitive with R-SRC. 

 

    
Figure 8: The test samples with sunglasses and scarves in the AR database. 

 
Table 13: The results of different methods on face recognition with real disguise (AR database). 

 Sunglass Scarf 
R-SRC 87.0% 59.5% 
CRC-RLS 68.5% 90.5% 
R-CRC  87.0%  86.0%  
Partitioned Sunglass Scarf 
R-SRC 97.5% 93.5% 
CRC-RLS  91.5% 95.0% 
R-CRC 92.0% 94.5% 

 
 

Table 14: The results of face recognition with real disguise (AR database) by using intensity and LBP features. 
 

Intensity feature Sunglass Scarf 
R-SRC 69.8% 40.8% 
CRC-RLS 57.2% 71.8% 
R-CRC  65.8%  73.2%  
Histogram of LBP Sunglass Scarf 
R-SRC 92.5% 94.8% 
CRC-RLS 93.5% 95.0% 
R-CRC 94.2% 95.8% 

 
 
In the above experiment of FR with scarf, the CRC-RLS model achieves higher recognition rates than 

the models with l1-norm characterization of coding residual (i.e., R-SRC and R-CRC), while the reverse is 

true for FR with sunglasses. To have a more comprehensive observation of these methods’ robustness to 

disguise, we perform another more challenging experiment. A subset from the AR database which consists 

of 1,900 images from 100 subjects, 50 male and 50 female, is used. 700 images (7 samples per subject) of 

non-occluded frontal views from session 1 were used for training, while all the images with sunglasses (or 

scarf) from the two sessions were used for testing (6 samples per subject per disguise). The images were 

resized to 83×60. Both the raw image intensity feature and the histogram of LBP [64] feature are used to 
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evaluate the proposed method. The results are shown in Table 14. By using the image intensity feature, R-

CRC is slightly worse than R-SRC in sunglass case with 4% gap, but significantly better than R-SRC in the 

scarf case with 32.4% improvement. Compared to R-SRC, CRC-RLS has 31% higher recognition rate in 

scarf case, and 13% lower rate in sunglass case. By using the local feature such as histogram of LBP, all 

methods could have much better performance (over 92% recognition accuracy), and both R-CRC and CRC-

RLS outperform R-SRC. One can also see that R-CRC achieves better performance than CRC-RLS in these 

two cases, validating that l1-regularization on representation residual is more robust than l2-regulariation.  

From Table 13 and Table 14, we may have the following findings. Since eyes are probably the most 

discriminative part in human face, the sunglass disguise will reduce a lot the discrimination of face image, 

and hence the l1-regularized R-SRC method will show advantage in dealing with sunglass disguise because 

the l1-regularization could actively increase the sparsity of coding coefficients. (Please refer to Section 3.2 

for more discussions on the relationship between feature discrimination and coefficient sparsity.) In the case 

of scarf disguise, though the occlusion area is big, the discrimination of face image is actually not much 

decreased. Therefore, the l2-regularized CRC-RLS and R-CRC methods can perform well. On the contrary, 

the l1-regularization in R-SRC will prevent the use of enough samples to represent the occluded face image 

so that its recognition rate is lower than CRC-RLS and R-CRC. When more effective features, e.g., 

histogram of LBP, are used, l2-regularized collaborative representation can show better performance than l1-

norm regularized sparse representation. 

 

4.5. Face validation 

In practical FR systems, it is important to reject invalid face images which have no template in the database 

[16]. In this section we test the face validation performance of the proposed method. The Sparsity 

Concentration Index (SCI) proposed in [16] is adopted to do face validation with the coding coefficient. The 

large-scale Multi-PIE face database is used in this experiment. The 100 subjects in Session 1 were used as 

the training set and the first 250 subjects in Session 2, 3 and 4 were used as customer images. Each training 

subject has 14 frontal images with neutral expression and illuminations {0,1,3,4,6,7,8,11,13,14,16,17,18,19}. 

For the test set, 10 typical frontal images of illuminations {0, 2, 4, 6, 8, 10, 12, 14, 16, 18} taken with neutral 

expressions were used. The face images were normalized and cropped to the size of 50×40.  
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(a)                                                        (b)                                                         (c) 

 
Figure 9: Subject validation on the MPIE database. (a) Session 2; (b) Session 3; and (c) Session 4. 

 
 
Fig. 9 plots the ROC (receiver operating characteristic) curves of the competing methods: CRC-RLS, S-

SRC, SVM, NN and NS. It can be seen that CRC-RLS and S-SRC work much better than the other methods, 

and CRC-RLS performs better than S-SRC in all sessions, especially Session 4. For instance, when the false 

positive rate is 0.1, the true positive rates of CRC-RLS are 99.1% in Session2, 90.7% in Session3 and 96.8% 

in Session4, while the true positive rates of S-SRC are 98.0%, 89.8% and 95.1% in the three Sessions, 

respectively. This is because the l1-norm regularized sparse coding will force one specific class to represent 

the input invalid query sample, and hence incorrectly classify this sample to that class. Comparatively, l2-

norm regularized coding does not force the coding coefficients to be sparse, and allows the invalid query 

sample to be evenly represented across different classes. Therefore, the false recognition can be avoided.  

 

4.6. Running time 

We compare the running time of CRC and SRC under two situations. For FR without occlusion/corruption, 

it is good to use l2-norm to measure the coding residual, and hence we compare the running time of S-SRC 

and CRC-RLS; for FR with occlusion/corruption, we compare the running time of R-SRC and R-CRC, 

where l1-norm is used to measure the coding residual for robustness to outlier pixels.    

a) Face recognition without occlusion: The running time of CRC-RLS and S-SRC with various fast l1-

minimization methods, including l1_ls [36], ALM [34][31], FISTA [33] and Homotopy[35], are compared 

here. We fix the dimensionality of Eigenfaces as 300. The recognition rates and speed of S-SRC and CRC-

RLS are listed in Table 15 (Extended Yale B), Table 16 (AR) and Table 17 (Multi-PIE), respectively. Note 

that the results in Table 17 are the average of Sessions 2, 3 and 4.  
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Table 15: Recognition rate and speed on the Extended Yale B database. 

 Recognition rate Time (s) 
S-SRC(l1_ls) 97.9% 5.3988   
S-SRC(ALM) 97.9% 0.1280 
S-SRC(FISTA) 91.4% 0.1567 
S-SRC(Homotopy) 94.5% 0.0279 
CRC-RLS 97.9% 0.0033 
Speed-up 8.5 ~ 1636 times 

 

Table 16: Recognition rate and speed on the AR database. 

 Recognition rate Time (s) 
S-SRC(l1_ls) 93.3% 1.7878 
S-SRC(ALM) 93.3% 0.0578 
S-SRC(FISTA) 68.2% 0.0457 
S-SRC(Homotopy) 82.1% 0.0305 
CRC-RLS 93.7% 0.0024 
Speed-up 12.6 ~ 744.9 times 

 
 

Table 17: Recognition rate and speed on the MPIE database. 

 Recognition rate Time (s) 
S-SRC(l1_ls) 92.6% 21.290 
S-SRC(ALM) 92.0% 1.7600 
S-SRC(FISTA) 79.6% 1.6360 
S-SRC(Homotopy) 90.2% 0.5277 
CRC-RLS 92.2% 0.0133 
Speed-up 39.7 ~ 1600.7 times 

 

On the Extended Yale B database, CRC-RLS, S-SRC (l1_ls) and S-SRC (ALM) achieve the best 

recognition rate (97.9%), but the speed of CRC-RLS is 1636 and 38.8 times faster than them. On the AR 

database, CRC-RLS has the best recognition rate and speed. S-SRC (l1_ls) has the second best recognition 

rate but with the slowest speed. S-SRC (FISTA) and S-SRC (Homotopy) are much faster than S-SRC (l1_ls) 

but they have lower recognition rates. On Multi-PIE, CRC-RLS achieves the second highest recognition rate 

(only 0.4% lower than S-SRC (l1_ls)) but it is significantly (more than 1600 times) faster than S-SRC (l1_ls). 

In this large-scale database, CRC-RLS is about 40 times faster than S-SRC with the fastest implementation 

(i.e., Homotopy), while achieving more than 2% improvement in recognition rate. We can see that the 

speed-up of CRC-RLS is more and more obvious as the scale (i.e., the number of classes or training samples) 

of face database increases, implying that it is more advantageous in practical large-scale FR applications. 

b) Face recognition with occlusion: We compare the running time of R-CRC with R-SRC on the Multi-

PIE corruption experiment [58]. As in [31] and [59], a subset of 249 subjects from Session 1 is used in this 

experiment. For each subject with frontal view, there are 20 images with different illuminations, among 

which the illuminations {0, 1, 7, 13, 14, 16, 18} were chosen as training images and the remaining 13 
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images were used as test data. The images were manually aligned and cropped to 40×30. For each test image, 

we replaced a certain percentage of its pixels by uniformly distributed random values within [0, 255]. The 

corrupted pixels were randomly chosen for each test image and the locations are unknown to the algorithm. 

The recognition rates and running time of R-SRC are directly copied from [31][59]. In order for a fair 

comparison of running time, we used a machine similar to that used in [31][59] to implement R-CRC4.  

 

Table 18: Average recognition rate with 50% and 70% random pixel corruptions on the MPIE database. 

Corruption R-CRC l1_ls Homotopy SpaRSA FISTA ALM 
40% 100% 97.8% 99.9% 98.8% 99.0% 99.9% 
50% 100% 99.5% 99.8% 97.6% 96.2% 99.5% 
60% 94.6% 96.6% 98.7% 90.5% 86.8% 96.2% 
70% 68.4% 76.3% 84.6% 63.3% 58.7% 78.8% 

 

Table 19: The running time (second) of different methods versus corruption rate. 

Corruption 0% 20% 40% 60% 80% Average Speed-up 
l1_ls 19.48 18.44 17.47 16.99 14.37 17.35 18.94 
Homotopy 0.33 2.01 4.99 12.26 20.68 8.05 8.79 
SpaRSA 6.64 10.86 16.45 22.66 23.23 15.97 17.43 
FISTA 8.78 8.77 8.77 8.80 8.66 8.76 9.56 
ALM 18.91 18.85 18.91 12.21 11.21 16.02 17.49 
R-CRC 0.916 0.914 0.918 0.916 0.915 0.916 ----- 

 

Table 18 shows the FR rates of R-CRC and R-SRC implemented by various l1-minimization solvers. 

One can see that R-CRC has the highest recognition rate in 40% and 50% corruption levels. In other cases, 

R-CRC is better than SpaRSA [32] and FISTA [33], and slightly worse than l1_ls [36], Homotopy [35] and 

ALM [31]. The running time of different methods under various corruption levels is listed in Table 19. Apart 

from the case of 0% corruption, the proposed R-CRC has the lowest running time. It can also be seen that 

the running time of R-CRC is almost the same for all corruption levels. The speed-ups of R-CRC over R-

SRC with various l1-minimization algorithms are from 8.79 to 19.94 in average, showing that R-CRC has 

much lower time complexity. 

 

5. Conclusions and Discussions 

We discussed the role of l1-norm regularization in the sparse representation based classification (SRC) 

                                                            
4 Our MATLAB implementations are on a PC with dual quad-core 2.4G GHz Xeon processors and 16GB RAM, similar to that used in [31] and [59], 

in which the machine is with dual quad-core 2.66GHz Xeon processors and 8GB of memory. 
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scheme for face recognition (FR), and indicated that the collaborative representation nature of SRC plays a 

more important role than the l1-regularization of coding vector in face representation and recognition. We 

then proposed a more general model, namely collaborative representation based classification (CRC). Two 

important instantiations of CRC, i.e., CRC via regularized least square (CRC-RLS) and robust CRC (R-

CRC), were proposed for FR without and with occlusion/corruption, respectively. Compared with the l1-

regularized SRC, the l2-regularized CRC-RLS and R-CRC have very competitive FR accuracy but with 

much lower time complexity, as demonstrated in our extensive experimental results. 

