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Abstract

ECG NOISE CANCELLATION

USING KERNEL ADAPTIVE FILTERING

Master of Science in Electrical Engineering

In this paper, several adaptive filter algorithms are proposed for noise cancellation
of ECG signals and determining the accuracy of ECG signal features. Adaptive filters
function based on minimizing the error between input signal which is a noisy ECG signal
and its reference input, which is one of many correlated artifacts present in the ECG
signal. These artifacts are 60Hz-power line interference, baseline wander, motion artifact
and muscle artifact (EMG). Different adaptive filter algorithms used in this project are
Least Mean Squares (LMS), Normalized Least Mean Squares (NLMS), Kernel Least
Mean Squares (KLMS) and Normalized Kernel Least Mean Squares (NKLMS). The
main focus of this paper is to compare the performance of the new kernel adaptive filter
to already existing least mean squares filter. The adaptive filter is based on kernel tricks
presented in mathematics. For results, the clean ECG signal was compared to the filtered
ECG signal using one of above algorithms and the accuracy of detecting peak locations

of P, Q, R, S and T waves were evaluated.



Section 1: Introduction

Electrocardiography (ECG) is a reading of electrical activity of the heart. It is detected
by several electrodes attached to the body surface and recorded using an external device.
It is used as a test to gather information about heart diseases, surgical procedures, etc. In
simpler terms, an ECG is to a human body what a computer troubleshoot message is to a
personal computer; in the same way that today’s personal computers can now detect
hardware malfunction from a system, an ECG can also be used to detect heart diseases.

An ECG signal on external device displays as shown in Figure 1.1 below.
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Figure 1.1 ECG signal and its Features [3]
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A typical ECG consists of a P-wave, a QRS complex and a T-wave. On the average, P-
wave has a duration of 80 milliseconds (ms), and it occurs during normal atrial
depolarization. The QRS complex occurs after a P-wave and it replicates the rapid

depolarization of the right and left ventricles. Due to the fact that ventricles have larger



muscle mass than atria, QRS complex amplitudes are generally higher than P-wave
amplitudes and have average duration of 80ms to 120ms. T-wave represents

repolarization of ventricles of the heart and has average duration of 160ms.

The human heart consists of four chambers: the right and left atriums and the right and
left ventricles. Atrium is a receiving chamber that pumps blood into the heart while
ventricle is a discharging chamber that pumps blood out of the heart. Figure 1.2 below

shows the human heart and its atrium and ventricle locations.
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Figure 1.2 The Human Heart and its Atrium and Ventricle Locations

A recorded ECG signal is not noise-free. Noise existing in ECG signals can be removed
using analog devices such as electronic circuits or using digital filters. As computational
microprocessor power increases, the need to remove noise has been shifted to the use of

digital filters. One of the very effective digital filters to remove ECG noise has been



adaptive filtering techniques. It is very simple to implement and works rather well with

the ECG signal due to their nonlinear nature.

This paper demonstrates different adaptive filtering structures. This paper will also
attempt to explain different noise sources in ECG signals, how they are caused and how
they can be canceled. This paper also demonstrates usage of different adaptive filtering
techniques to cancel noise sources from an ECG signal and to accurately detect its

characteristics.



Section 2: Artifacts

ECG noise is contributed by environmental and biological sources. Examples of
environmental noise are 60Hz power interference noise and instrumentation noise
generated using hardware. Examples of biological noise are baseline wander,
electromyogram (EMG) and motion artifact. In this report, the causes of each noise

source will be explained as well as methods to eliminate the noise.

2.1 Instrumentation Noise

This is one of the environmental noise sources. This noise is generated by hardware that
is recording the ECG signal. Since this noise can be removed using Low Noise

Amplifiers (LNAs), no digital filtering is needed.

2.2 60-Hz Power Line Interference

Alternating current (AC) is the type of electricity that we get from the wall. It changes
direction 60 times per second, hence 60Hz. It is an environmental noise in the ECG that
results from poorly grounded ECG recording machine. Because of the alternating current
feature, this noise appears at 60Hz and its harmonics; meaning if the sampling rate is
360Hz, this noise appears at 60Hz, 120Hz, 180Hz, etc. For simplicity in this project, it
was assumed that power-line interference only appears at 60Hz. For removal, Type I
adaptive filter is used to subtract 60Hz sinusoidal from ECG signal. Figure 2.1 below

demonstrates this interference.
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Figure 2.1 PLI noise. Number of Samples = 360.

2.3 Baseline Wander

Baseline drift is a biological noise that appears in ECG signal. In this noise, isoelectric
line changes position which makes the ECG looks like its “wandering”. It is caused by
moving cables during recording, patient movement, loose electrodes, etc. Van Alste and
Scheilder [17] describe an efficient finite impulse response (FIR) notch filter that is
effective in removing baseline wander and power interference noise from ECG. The
adaptive filter to remove this noise is a special case of notch filtering, with notch at zero
frequency to remove 0-0.5 Hz frequencies. For removal, Type I filter is used with
reference noise being constant at value 1. The convergence parameter should be smaller

than 0.006 to remove baseline drift. Demonstration of this noise is shown in the Figure

2.2 below.
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Figure 2.2 Baseline Wander Artifact. Number of Samples = 360.



2.4 Muscle Artifact

Muscle artifact or electromyography (EMG) is a biological noise that can appear in the
ECG signal. EMG measures muscle response to a nerve’s stimulation of the muscle; it is
an electrical potential generated by muscle cells when the cells are neurologically or
electrically activated. In the ECG, muscle artifact can be produced by unwanted reaction
to electrodes. This explains why they ask patients to remain calm during the ECG
recordings to avoid unwanted noise. To reduce this noise, typically more than one ECG
lead is used while recording. Type I adaptive filter applied for motion artifact will also

remove EMG from signal. Demonstration of this artifact is shown in Figure 2.3 below.
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Figure 2.3 EMG Artifact. Number of Samples = 360.
2.5 Motion Artifact

Motion artifact is the most difficult biological noise to cancel, which can appear in the
ECG signal. The spectrum of this noise is broad and it completely overlaps the ECG’s
spectrum. Most linear filtering methods are unable to remove this noise source.
Adaptive filter can eliminate this noise source by having the adaptive filter reference
input set to an impulse value of 1 that corresponds to the beginning of the P-wave. This

way, adaptive filter only subtracts the P-QRS-T complex from the signal and the



remainder will be motion artifact. Adaptive filter Type I is used to subtract this noise

from the ECG. Demonstration of motion artifact is shown in Figure 2.4 below.

Electrode motion artifact

Figure 2.4 Motion Artifact. Number of Samples = 360.

2.6 Noisy ECG

A noisy ECG typically includes one or more artifacts described in previous subsections.
The noisy ECG used in this project consists of PLI, Baseline Wander, Motion artifact and
Muscle artifact added to a clean ECG signal. A one second segment of noisy ECG is

shown below in Figure 2.5.



Low noise ECG

(Aw) sbejjop

Time (s)
Medium noise ECG

(Aw) ebeyjop

Time (s)
High noise ECG

Time (s)

Figure 2.5 Different ECG Noise. Number of Samples = 360.

As can be seen in Figure 2.5, 3 different levels of noisy ECG were used to be filtered.



Section 3: Adaptive Filters

Adaptive filters have 2 basic filter structures. One of the adaptive filter structures is

shown in Figure 3.1 below,

Si1+nl > eT—>

—> W —y

Figure 3.1 Adaptive Filter Structure 1 (Type I)

In this filter structure, primary input is signal s; with additive noise n; and reference input
is noise np, which can be any baseline wander, power-interference noise, etc. and it is
correlated with n;. Both noise sources n; and n, should not be correlated with the signal
s;. Filter output is y and filter error is e = (s; + ny) —y. W is the weight function that

is updated every iteration and the basic structure for it is,

(1

The other basic adaptive filter stricture is shown in Figure 3.2 below.



S1+nl— eT—>
\ +
—S —> W —y
L

Figure 3.2 Adaptive Filter Structure 2 (Type II)

Unlike filter structure 1, this structure has s; as its reference signal. In this filter structure,
primary input is signal s; with additive noise n; and reference input is noise s,, which can
be the clean ECG signal and it is correlated with s;. Because of non-linear nature of the

ECG signal, this adaptive filter structure cannot be used to remove noise sources from the

ECG signal.

3.1 Least Mean Squares (LMS) Algorithm

LMS algorithm is a linear adaptive filter algorithm invented by B. Widrow and T. Hoff.
This filter works based on finding filter coefficients that leads to minimizing the mean
square of the error which is the difference between the desired signal and error signal. Its

stochastic gradient descent method adapts to instantaneous error.

In order for LMS filter to approach the optimum filter weights, the algorithm starts by
assuming small weights (zero) and at each step, finds the gradient of the mean square
error and then updates the weights. If mean square error is positive, error is increasing
positively, and if same error is used, filter weights need to be reduced accordingly. And
vice versa, if gradient is negative, filter weights need to be increased. Weight update

equation is shown below,

10



w(@) =w(i—1)+ pe(@)x@@), )

where e(i), x(i), n and w(i) are the error, the input, step-size parameter, and weight

function respectively.

Under the assumption that the step-size parameter L is significantly small, LMS

algorithm converges in the mean square provided that u satisfies condition below,

1

0<uc< [2], 3)

max

where 4 is largest eigenvalue of the correlation matrix.

LMS algorithm can be summarized as shown in Figure 3.3 below.

Inputs:
x =input signal
dn = desired signal
M = filter length
u = step-size factor
Outputs
y = output of filter
e = error signal
Pseudo-code
Initialize:
filter coefficient w(1)=0
Loopl1:
For every i, do
Calculate e(i) = d(i) - w(i)™ x(i)
Update w(i) = w(i) +u e(i) x(i)
End

Figure 3.3 LMS algorithm

3.2 Normalized Least Mean Squares (NLMS) Algorithm

11



NLMS algorithm was developed due to sensitivity of the LMS algorithm to scaling of its
input X (i), making it very difficult to choose the correct step-size to ensure stability of
the algorithm. This algorithm works based on normalizing the power of the input and

therefore, stabilizing the filter.

The modified weight update equation is shown below,

w(i) = w(i) + L0 o) )

e+llx(@|1?

where s epsilon. The epsilon is a very small non-zero number to avoid division by 0 in

denominator.

NLMS algorithm can be summarized as shown in Figure 3.4 below.

Inputs:
x = input signal
dn |= desired signal
M = filter length
u = step-size factor
E = epsilon
Outputs
y = output of filter
e = error signal
Pseudo-code
Initialize:
filter coefficient w(1)=0
Loop1:
For every i, do
Calculate efi) = d(i) - w(i)" x(i)
Update w(i) = w(i) +p e(i) x(i)/{ E + | x(i) IF)
End

Figure 3.4 NLMS algorithm
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3.3 Gaussian Reproducing Kernel Hilbert Space (RKHS)

Gaussian RKHS is a mercer kernel. A kernel k(i, j), is a continuous function that takes
two inputs i and j and maps them to a real value independent of the order of the inputs,
i.e., k(i,j) = k(j,i) € R. The Mercer’s theorem [18] “is a representation of a symmetric
positive-definite function on a square as a sum of a convergent sequence of product
functions” [15]. Since our noise sources are Gaussian, Gaussian RKHS is used instead of

Polynomial RKHS.

Algorithm for Gaussian RKHS is shown in Figure 3.5 below.

Inputs:
x (i) = Input 1
x (j) = Input 2
a = Kernel Parameter

Outputs:
k = Gaussian Kernel

Pseudo-code:

Calculate: KernelG(x(i),x(j)) = exp(—allx(i) — x(j)I)

Figure 3.5 Gaussian RKHS

3.4 Kernel Least Mean Squares (KLMS) Algorithm

The basic LMS algorithm works best on the linear data, where mapping between the
input signal and the desired signal is linear. For nonlinear data, that mapping between the
desired signal and the input signal is nonlinear; the LMS algorithm will show poor
performance. To improve performance, the LMS algorithm must be reformulated to be
capable of learning nonlinear mapping. To create nonlinear mapping, KLMS algorithm

uses RKHS to transform the input into higher dimension feature space. Since input

13



signal is in higher dimension, it will provide richer representation of it and therefore, its
stochastic gradient descent will be more effective for nonlinear mapping of the LMS

algorithm for nonlinear problems.

The KLMS algorithm weight update algorithm is similar to the LMS weight update

algorithm and it is shown below,
w(i) =w(i) + ne(@ o) [2], 5)

where @(i) = <p(x(i)) is the higher dimension of input signal. As size of the input signal
increases, size of the ¢ will increase as well; in case of the Gaussian kernel, it will
increase to infinity. This may cause problem and the need for alternative way of
computation. Using the kernel trick, we can reduce the computation, so that filter output
in the input space can effectively be computed by the kernel evaluation. A kernel trick is
a way of mapping inputs into an inner product space without the explicit need to compute

the mapping [19]. By using the kernel trick, updated weight equation will transform to,
w(@® () = p Xjog e(Dk(),x") [2], (6)
where is the inner products between transformed inputs.

Comparing the above weight update algorithm of KLMS algorithm to weight update of
the LMS algorithm, we notice that the KLMS algorithm is calculated weight-less.
Instead, it uses sum of all the past errors multiplied by the kernel evaluations on the
previous data. This will enable computation of the output with a single inner produce by

having direct access to weights.

14



We denote y(i) as the output of the filter at time i , we will have the following new

algorithm,

fa—-1D=pu¥""e() k(x(),x®) [2] (7)

This new algorithm is KLMS algorithm, which simply is the LMS in RKHS, and filtering

is done by the kernel evaluation. Figure 3.4 below summarizes Equation 7.

Figure 3.4 KLMS topology [2]

Unlike the LMS and the NLMS algorithms, the KLMS algorithm has both linear and
non-linear step-size parameters. This allows improved results for the KLMS algorithm
on non-linear signal filtering. The KLMS algorithm can be summarized as shown in

Figure 3.5 below.

15



Inputs:
x = input signal
dn = desired signal
M = filter length
W = step-size factor
a = Kernel Parameter
E = epsilon
Outputs
y = output of filter
e = error signal
Pseudo-code
Initialize:
filter coefficient w(1) =0
expansion coefficienta(1) = udn(1)
Loop1:
For every i, do
Calculate for everyj= 1:i-1
yli)= Zaj(i) KernelG(x(i), x(j) )
Calculate e(i) = d(i) - w(i)" x(i)
Update w(i) = w(i) +u e(i) x(i)
Update a(i) = p e(i)
End

Figure 3.5 KLMS algorithm

3.5 Normalized Kernel Least Mean Squares (NKLMS) Algorithm

Just like the NLMS algorithm that was derived from the LMS algorithm to improve
performance of the LMS algorithm, the NKLMS algorithm is driven from the KLMS

algorithm to improve KLMS algorithm performance. Updated weight function for

NKLMS algorithm is shown below,

we(d) x(0)

wD =wd + 5 aR

16




where [lp(DII? s lpDII* = k(x(D),x(

Just like KLMS algorithm, NKLMS algorithm also has both linear and non-linear step-

size parameters. KLMS algorithm can be summarized as shown in Figure 3.6 below.

Inputs:
x = input signal
dn = desired signal
M = filter length
u = step-size factor
a = Kernel Parameter
Outputs

y = output of filter
e = error signal
Pseudo-code
Initialize:
filter coefficient w(1) =0
expansion coefficienta(1) = u dn(1)
Loop1:
For every i, do
Calculate for everyj= 1:i-1
Y(i)= Sa;(i) KernelG(x(i), x(j) )
Calculate efi) = d(i) - w(i)™ x(i)
Update w(i) = w(i) +p efi) x(i) /{ E+ [ (i) IF)
Update a(i) = pe(i)
End

Figure 3.6 NKLMS algorithm

3.6 Multistage Adaptive Filter

The multistage adaptive filter being used in this project is demonstrated in Figure 3.7

below.

17
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Figure 3.7 Multistage adaptive filter used in this project [8]

A

Our desired signal s; + n; is the noisy ECG signal, X; is 60Hz-PLI, and X, is baseline
wander artifact. Output of this stage, appears at e;. Signal e; will be used in QRS
detection to generate X and used for filter final stage. Final clean ECG signal appears

aty .

This filter is divided into 2 stages. 1*' Stage removes 60Hz PLI and Baseline Wander. 2™

removes muscle artifacts and motion artifacts.
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Section 4: Numerical Experiment

Selecting the optimum filter parameters for this noise cancellation is important.
Generally for ECG filtering, filter parameters were calculated through approximation and
then manually adjusted for best performance through trial and error. For PLI and
Baseline Wander removal, the smaller the step-size, the better the overall filter will
perform. The filter will converge slower but fewer artifacts will go through. For Filter 1
and 2 (Figure 3.7), linear and non-linear step-size of 0.006 and filter length of 20 was
selected. For the 3™ filter, the correct filter length must be calculated first. Since we
know that P-QRS-T segment consists of PR interval and QT interval, and knowing PR
interval has duration of 50 to 120ms and QT interval has duration of 420ms, we can now
estimate that P-QRS-T segment has duration of 470 to 540ms. Knowing that the
sampling rate is 360Hz, which would correspond to 169.2 to 194.4 samples; that would
mean filter length for P-QRS-T segment has to be at least 195 to ensure that segment will
not be cut-off early. Therefore, for the 3" filter, linear and non-linear step-size was
selected to be 0.4 and filter length was calculated to be 200. Filter parameters were

summarized in Table 4.1 as illustrated below.

Linear Step-size | Non-Linear Step-size | Filter Length

Filter 1 0.006 0.006 20
Filter 2 0.006 0.006 20
Filter 3 0.4 0.4 200

Table 4.1 Filter Parameters.
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Noisy ECG signals were created by adding artifacts to clean the ECG signals. The clean
ECG signal was 1 minute duration of the signal record 100 from the MIT-BIH database
[12]. All artifacts were also obtained from the MIT-BIT database [13]. The program to

generate the noisy ECG signals is illustrated in Appendix A.

Once the noisy ECG signals were created, they were fed into main MATLAB program
[Appendix B]. In the main program, performance of LMS, NLMS, KLMS and NKLMS

algorithms on the noisy ECG signals were tested.

For the ECG filtering, first PLI and Baseline Wander were filtered out, and then QRS
analysis was applied to determine the beginning of P-wave value for final filter stage of
muscle artifact and motion artifact removal. This process was done for each LMS,
NLMS, KLMS and NKLMS algorithm 3 times for each of 3 noisy ECG signals. For
QRS detection, a 3" party program was used which detects QRS features using Wavelet

Method [7].

Generally when it comes down to analysis of the signals, the most common method of
performance analysis is signal to noise ratio (SNR). However, SNR analysis for an ECG
is meaningless because scientists and Emergency Medical Technicians (EMTs) that work
with ECG signals are not interested in its SNR, but rather in its accuracy of detecting its

wave parameters .

Instead of SNR, true positives (TPs), false negatives (FNs) and false positives (FPs) of
wave parameters were calculated. TPs are the peak locations that were detected in
filtered ECG and matched to peak locations to clean ECG. FNs are peak locations that

were detected in clean ECG but were absent in filtered ECG. FP’s are peak locations that



were present in filtered ECG but never existed in clean ECG. To analyze accuracy
further, intervals at which peak locations were detected were also considered. 0.00s
interval means that there was a match in the ECG feature between the ECG clean signal
and the filtered ECG signal by sample number. Interval of £0.01s means that peak
locations are up to £3 samples off based on the fact that the sampling rate is 360 samples
per second and +1% of 360 would be £3.6. Interval of 0.02s means that peak locations

are up to =7 samples off.

The results for LMS, NLMS, KLMS, and NKLMS algorithms are shown in the four

tables below.

LMS NoisyECG1 NoisyECG2 NoisyECG3

P wave TP FN FP TP FN FP TP FN FP
Pealks

0.00 s 33% | 94.7% [ 93.5% | 53% | 94.7% | 94.2% 4% 06% | 93.3%

3
H.01s | 22.7% | 77.3% | 72.6% | 21.3% [ 78.7% | 76.8% | 20% 80% | 77.6%

+0.02 s 28% | 72%5 | 66.1% | 30.7% | 69.3% | 66.7% | 29.3% | 70.7% | 67.2%

Q wave P FN FP P FN FP P FN FP
Peaks

0.00 s 4% 06% | 952% | 2.7% | 97.3% | 97.1% | 2.7% | 973% | 97%

£0.01s | 30.7% | 6953% | 629% | 16% 84% | 82.6% | 14.7% | 853% | 83.6%

+0.02 s 54 7% | 45.5% 99 40%% 60% 46 289, T2% 68.7%
R wave P FN FP P FN FP TP FN FP
Peaks

0.00 s 4% O96% | 95.2% 4% 96% | 95.7% | 53% | 94.7% | 94%

+0.01 s 28% 72% | 66.1% | 28% 38 69.6% | 24% 76% | 73.1%

H02s | 653% | 347% | 21% [ 62.7% [ 37.3% | 31.9% | 56% 44% | 37.3%

S wave TP FN FP TP FN FP TP FN FP
Peaks

0.00 s 1.3% | 98.7% | 98.4% %% 100% | 100% | 1.3% | 98.7% | 98.3%

+0.01s | 293% | 70.7% | 64.5% | 32% 68% | 65.2% | 17.3% | 82.7% | B0.6%

£0.02s | 693% | 30.7% | 16.1% [ 69.3% | 30.7% | 24.6% | 61.3% | 38.7% | 31.3%

T wave TP FN FP P FN FpP TP FN FP
Peaks

0.00 s 0% 100% | 100% 0% 100% | 100% | 13% | 98.7% | 98.3%

+0.01 s 03% | 80.7% | B8 7% | 14.7% 63 841% [ 17.3% | 82 7% | 80.6%

H.02s | 293% | 70.7% | 64.5% | 28% 2% [ 69.6% [ 32% 68% | 64.2%

Table 4.2 LMS Results. Number of Samples = 21600.



NLMS NoisyECG1 NoisyECG2 NoisyECG3
P wave TP FN FP TP FN FP TP FN FP
Peaks

0.00s 33.3% | 66.7% | 64.3% | 28% 72% | 63.2% | 16% 84% | 78.9%
.01 s 40% 60% | 37.1% | 40% 60% | 47.4% | 30.7% | 69.3% [ 39.6%
+0.02 5 40% 60% | 37.1% | 42.7% | 37.3% [ 43.9% | 34.7% | 63.3% | 34.4%
Q wave TP FN FP TP FN FP TP FN FP
Peaks

0.00 s 1.3% | 98.7% | 986% | 13% | 98.7% | 98.2% 0% 100% | 100%
H01s | 22.7% | 77.3% | 75.7% | 133% [ 86.7% | 82.3% | 93% [ 90.7% | 87.7%
+H0.025 | 333% | 66.7% | 64.3% | 34.7% | 65.3% | 34.49% | 21.3% | 78.7% | 71.9%
R wave TP FN FP TP FN FP TP FN FP
Peaks

0.00 s 53% | 94.79% | 943% | 2.7% | 97.3% | 96.3% | 2.7% [ 97.3% | 96.3%
H0.01s | 38.7% [ 61.3% | 538.6% | 21.3% 44 T1.9% | 20% 80% | 73.7%
H0.02s | 333% [ 46.7% | 429% | 42.7% [ 57.3% | 439% | 453% | 34.7% | 40.4%
5 wave TP FN FP TP FN FP TP FN FP
Peaks

0.00s 33% | 94.7% | 94.3% | 33% | 94.7% | 93% 33% | 94.7% | 93%
+0.01 s 36% 4% | 61.4% | 24% 76% | 68.4% | 18.7% | 81.3% | 75.4%
+0.02 5 6% 44% 40% | 41.3% | 38.7% | 45.6% | 38.7% | 61.3% | 49.1%
T wave TP FN FP TP FN FP TP FN FP
Peaks

0.00s 1.3% | 98.7% | 98.6% %o 100% | 100% | 1.3% | 98.7% | 98.2%
+0.01 s 16% B49 | B29% | 33% | 94.7% | 93% 93% | 90.7% | 87.7%
H0.02s | 333% | 66.7% | 64.3% | 173% | B2.7% | 77.2% | 18.7% | 81.3% | 75.4%

Table 4.3 NLMS Results. Number of Samples = 21600.




KLMS NoisyECG1 NoisyECG2 NoisvECG3
P wave TP EN FP TP EN FP TP FN FP
Peaks

0.00s 6.7% | 933% | 928% | 33% | 947% | 944% | 53% | 94.7% | 94.4%
H0ls |26.7% | 73.3% | 71% | 253% | 74.7% | 732% | 24% T6% 75%
.02 s 36% | 64% | 60.9% | 32% 68% | 66.2% | 36% 64% | 62.5%
Q wave TP FN FP TP FN FP P FN FP
Peaks

0.00s 03% | 90.7% | 899% | 6.7% | 933% | 93% 5.3% | 94.7% | 94 4%
+H.0ls 56% | 44% | 39.1% | 493% | 30.7% | 47.9% [ 46.7% | 33.3% | 514%
+0.02s | 38.7% | 41.3% | 36.2% | 30.7% | 49.3% | 46.3% | 30.7% | 49.3% | 47.2%
R wave TP FN FP TP FN FP TP FN FP
Peaks

0.00s | 187% | 81.3% | 79.7% | 21.3% | 78.7% | 77.3% | 14.7% | 833% | 84.7%
H01s | 933% | 6.7% 0% 96% 4% 0% 973% | 2.7% 0%
H.02s | 933% | £.7% 0% 96% 4% 0% 973% | 2.7% 0%
S wave TP EN FP TP FN FP TP FN FP
Peaks

0.00s 53% | 94.7% | 94.2% | 4% 96% | 95.8% | 4% 06% | 93.8%
.01 60% | 40% | 34.8% | 64% 36% | 324% | 653% | 34.7% | 31.9%
+.02s 8R% [ 12% | 43% | 933% | 6.7% | 14% 82% 8% 42%
T wave TP FN FP TP FN FP TP FN FP
Peaks

0.00 s 4% 06% | 95.7% | 13% | 98.7% | 98.6% | 13% | 98.7% | 98.6%
H.0ls 20% | B0% | 783% | 18.7% | 81.3% | B0O3% [ 26.7% | 73.3% | 72.2%
H.02s | 44% | 56% | 522% | 37.3% | 62.7% | 60.6% | 38.7% | 61.3% 7%

Table 4.4 KLMS Results. Number of Samples = 21600.




NKLMS NoisvECG1 NoisvECG2 NoisyECG3

P wave TP EN FP TP FN FP TP FN FP

Peaks

0.00 s 6.7% | 93.3% | 92.8% | 53% | 94.7% | 944% | 53% | 94.7% | 94.4%
H.01s | 267% | 733% | 71% | 253% | 74.7% | 73.2% | 24% T6% 75%
+0.02 s 36% 64% | 609% | 32% 68% | 66.2% | 36% 64% | 62.5%
Q wave TP EN FP TP FN FP TP FN FP
Peaks

0.00 s 93% | 90.7% | B9.9% | 6.7% [ 93.3% | 93% 3.3% | 94.7% | 94.4%
+0.01 s 6% 449 | 39.1% | 49:3% | 50.7% | 47.9% [ 46.7% | 533% | 514%
H.02s | 538.7% | 41.3% | 36.2% | 50.7% | 493% | 46.3% | 530.7% | 49.3% | 47.2%
R wave TE FN FP TP FN FP TP FN FP
Peaks

0.00 s 18.7% | 813% | 79.7% | 213% | 78.7% | 775% | 14.7% | 853% | 84.7%
H.01s | 933% | 6.7% 0% 96% 4% 0% 873% | 2.7% 0%
+H.02s | 933% | 6.7% 0% 96% 4% 0% O7T3% | 2.7% 0%
S wave TP FN FP TP FN FP TP FN FP
Peaks

0.00s 53% | 94.7% | 94.2% 4% 96% | 95.8% 4% 6% | 95.8%
+).01 s 60% 40% | 348% | 64% 36% | 324% | 653% | 34.7% | 31.9%
+0.02 s 88% 12% 43% [ 933% | 6.7% 1.4% G2% 8% 4.2%
T wave TP FN FP TP FN FP TP FN FP
Peaks

0.00 s 494 6% | 95.7% | 13% | 98.7% | 986% [ 13% | 98.7% | 98.6%
+0.01 s 20% 80% | 78B3% | 18.7% | 813% | 803% | 26.7% | 73.3% | 72.2%
+0.02 s 449; 56% | 52.2% | 373% | 62.7% | 60.6% | 38.7% | 61.3% | 59.7%

Table 4.5 NKLMS Analysis results. Number of Samples = 21600.

The time it takes for computer to execute each section of program on system with Intel
Quad core Xeon 1240 CPU with 8GB of ram is provided in figure below.

LMS

NLMS

KLMS

NKLMS

Time to Compute (Seconds)

0.220

0.307

589.061

589.491

Table 4.6 Computation time on Intel Xeon 1240 CPU. Number of Samples = 21600.

Graphical results are provided in Figures 4.1, 4.2, 4.3, and 4.4 below.
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Figure 4.1 Results using LMS algorithm. Number of Samples = 3600.

25



Clean ECG signal

(Aw) ebejjop

(Seconds)

Time
Noisy ECG signal

(Aw) sbejjop

10

(Seconds)

Time
1st Stage Filtered ECG using NLMS

~ o ~

(Aw) sbejjop

Time (Seconds)
2nd Stage Filtered ECG using NLMS

Time (Seconds)

Figure 4.2 Results using NLMS algorithm. Number of Samples = 3600.
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Figure 4.3 Results using KLMS algorithm. Number of Samples = 3600.
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Figure 4.4 Results using NKLMS algorithm. Number of Samples = 3600.
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Section 5: Conclusion

Based on results from graphs and tables, it can be seen that the KLMS and NKLMS
algorithms have much better performance than the LMS and NLMS algorithms.
However, even though this program is designed for online computation, it still takes a

while to compute based on calculation time provided in Table 4.6.

As for improving the results, one can implement variable step-size algorithm which can
help on faster convergence of algorithm at the start. Faster adaptation allows the signal to
be analyzed by smaller segments, which will help on reducing the Gaussian RKHS.

Reduction in the Gaussian RKHS means fewer algorithm computations.

Another thing to note is that the KLMS and NKLMS algorithms have linear and non-
linear step-size parameters. For the purpose of this project both parameters were set to be
equal. By trial and error, it is possible to adjust non-linear parameters to improve the

performance of the KLMS and NKLMS algorithms.

LMS NLMS KLMS NKLMS

Data Modeling | Linear | Linear | Linear and Non-Linear | Linear and Non-Linear

Computation Fast Fast Moderate Moderate

Simplicity Simple | Simple Moderate Moderate

Table 4.7 Summary of Algorithm Differences
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