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ABSTRACT

Relationships between cortical neural recordings as a

representation of functional connectivity between cortical

brain regions were quantified using different time-

frequency criteria. Among these, Partial Directed

Coherence (PDC) and Directed Transfer Function (DTF)

and their extensions have found wide acceptance. This

paper aims to assess and compare the performance of

these two connectivity measures that are based on time-

varying multivariate AR modeling. The time-varying

parameters of the AR model are estimated using an

Adaptive AR modeling (AAR) approach and a short-time

based stationary approach. The performance of these two

approaches is compared using both simulated signal and

a multichannel newborn EEG recording. The results

show that the time-varying PDC outperforms the time-

varying DTF measure. The results also point to the

limitation of the AAR algorithm in tracking rapid

parameter changes and the drawback of the short-time

approach in providing high resolution time-frequency

coherence functions. However, it can be demonstrated

that time-varying MVAR representations of the cortical

connectivity will potentially lead to better understanding

of non-symmetric relations between EEG channels.

1. MEDICAL PROBLEM AND SIGNAL
PROCESSING FORMULATION:
BACKGROUND AND REVIEW

The ability of the brain to conduct high level sensory and
cognitive functions depends strongly on underlying
interactions between different brain regions [1]. Insights
into the inter-relations across the brain provide a basis for
understanding high level mechanisms of both healthy and
pathological brain function. Scalp EEG recordings are
projections of deep brain and cortical activity and can be
considered as the manifestations of the brain sources at
the scalp level. Despite some more accurate methods for
investigating neural interrelations in the brain such as
fMRI or ECoG, in many cases scalp EEG studies are
preferred due to their non-invasive nature and low cost.

Multivariate autoregressive (MVAR) models are able
to represent interactions between EEG signals in the form
of linear difference equations [2, 3]. The general form of
the time-varying MVAR models is presented in section

2.2. By using the multivariate AR representation of EEG
signals, not only can the direction of the information flow
between channels be inferred, but also the direct or
indirect influences detected. Directed Coherence [4, 5],
Partial Directed Coherence (PDC) [5], Generalized
Partial Directed Coherence (GPDC) [6], Directed
Transfer Function (DTF) [3], direct Directed Transfer
Function (dDTF) [7] and Granger Causality Index (GCI)
[8] are MVAR-based criteria which have been introduced
to determine directional influence in multivariate
systems. Except for GCI, which is a time-domain
measure, the other criteria are frequency-based.

The assumption on which all these methods are based
is that the underlying signals are stationary and that their
interactions are constant over time. In other words, all of
them assume time-invariant MVAR parameters.
However, EEG signals are non-stationary [9]. Moreover,
the mutual influence of brain regions and, therefore, of
EEG channels doesn‟t necessarily show a time-invariant
behavior. Therefore, new time dependant forms of the
connectivity measures need to be introduced in such non-
stationary signal analysis applications.

A number of solutions have been suggested to account
for the problem of time-varying directional interactions
between EEG channels. In [10], the authors used the idea
of short-time DTF (ST-DTF) to divide the entire data into
short overlapping time intervals and to compute the DTF
measure for each interval and plot a time-frequency map
of the information flow for each pair of channels. In
another approach, model parameters of a time-varying
MVAR are estimated by using adaptive methods such as
Recursive Least-Squared or Kalman filtering and then a
parametric time-frequency map, including functional
relationships between channels, is produced using the
estimated parameters [11, 12]. Analysis results of the
above-mentioned studies on both simulated and real EEG
signals suggest that the MVAR parameter estimation
approaches based on Kalman filtering and its extensions
are good candidates for non-stationary signal analysis
[12-14]. Extended versions of Kalman filter-based
estimators are capable of simultaneous modeling of
nonlinearity and rapid time-varying behavior of the
signals. In this paper, the suitability of an adaptive AR
model algorithm based on Kalman filtering for newborn
EEG signal analysis is investigated and compared with
the short-time based approach. Ability of tracking fast
parameter changes as well as the image resolution of the
time-frequency representations are two important criteria
which have been taken into consideration in this

978-1-4577-0690-5/11/$26.00 ©2017 IEEE 179

2017 7th International Workshop on Systems, Signal Processing and their Applications (WOSSPA)



comparative study. The AAR algorithm has previously 

been used for other applications such as brain-computer 

interface (BCI) systems [13].  

The paper is organized as follows. Section 2 describes 

the data used as well as the time-varying PDC and DTF 

measures based on an adaptive AR modeling approach 

and the windowing (short-time) approach. In section 3, 

the results of these two methods on the simulated and 

newborn EEG data that includes a seizure are presented. 

Section 4 concludes the paper.  

 

 

2. METHODS 

 

First, we used the ARFIT algorithm to fix an optimum 

model order for the time-varying MVAR model. ARFIT 

package estimates both the time-invariant parameters of 

the MVAR model and its optimum order [15]. The order 

estimation uses Schwarz‟s Bayesian Criterion (SBC) 

[16]. The estimated model order (popt) was then fixed for 

the remainder of the analysis. Time-varying PDCs and 

DTFs were computed based on the time-varying MVAR 

model fitted to the signal using an Adaptive AR modeling 

(AAR) algorithm. This algorithm uses Kalman filtering 

[13] for parameter estimation. A surrogate data method 

with 50 realizations was then used to select the most 

significant values of the measures at 99% confidence 

level. Surrogates were obtained by randomizing all 

samples of the signal to remove all causal relationships 

between them [17]. In the following, the measures, the 

Kalman filter-based AAR algorithm and the short-time 

approach are briefly introduced.  

 

2.1. Time-varying MVAR parameter estimation 

using the linear Kalman filtering  

The AAR algorithm based on Kalman filtering has 

successfully been used for the analysis of physiological 

signals [13, 14]. The question addressed here is whether it 

is suitable for newborn EEG analysis as well. The 

algorithm adopts the linear Kalman filtering approach to 

update the MVAR parameters for each time sample. To 

this end, MVAR equations are reformulated in the form 

of state space equations by re-arranging all matrix 

parameters into a state vector of the dynamical system 

and considering the non-stationary signal as the 

observation; that is: 

 

 
                                    

                            
  (1) 

 

where      is the parameters vector (state vector),      is 

the Kalman gain,      is the measurement matrix,      is 

the one-step prediction error and       is the estimated 

vector.      and      can be represented as follows: 

 

 

where                            . The elements 

of the state vector      are estimated by using classical 

Kalman filtering approach. Process and observation noise 

covariance matrices (W(n) and V(n), respectively) can be 

updated by different methods [13, 18]. For this study, the 

following update equations and the update coefficient 

(UC) of 0.0001 led to the best performance.  
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where      is the a-posteriori correlation matrix, I is the 

identity matrix, p is the model order and „ ‟ shows the 

matrix product operator. The speed of adaptation, the 

time resolution and the smoothing of the AR estimates 

are determined by the parameter UC [13]. 

2.2. Adaptive connectivity measures 

A time-varying N-variate AR process of order p can be 

represented as: 
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where w is a vector white noise, the matrices Ar are given 

by: 
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for r = 1, …, p and their elements are estimated using the 

adaptive approach described in section 2.1. A number of 

time-varying connectivity measures can be defined based 

on the following transformation of the MVAR parameters 

(Ar(n)) to the frequency domain: 
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The time-varying version of partial directed coherence 

(PDC) [5] is defined as: 
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where aj(n,f) is the j‟th column of the matrix A(n,f). 

  The time-varying version of directed transfer function 

(DTF) [3] is defined as:  

      

 
 
 
 
 
 
 
        

 
        

 
        

 
         

 
 
 
 
 
 

 (2) 

       
         

   
         

  (3) 

180



(12) 

           
        

            
  

   

 
        

   
             

 
(10) 

where 

                (11) 
 

Both measures (Eq. 9 and Eq. 10) take values between 

zero and one where high values in a certain frequency 

band reflect a directionally linear influence from channel 

j to channel i in that band (       ). In contrast to the 

PDC, which is normalized by the sum of the influenced 

processes (j‟th column of the matrix A), DTF is 

normalized by the sum of the influencing ones (i‟th row 

of the matrix H).  

 

2.3. Short-time based connectivity measures 

In this approach, the entire signal is divided into short 

overlapping time intervals using a Hamming window. 

Both PDC and DTF are computed for each interval and 

finally time-frequency maps of the information flow are 

plotted for each combination of channels. The length of 

the window is selected so that the requirement of 

asymptotic signals is satisfied, i.e., the product of the time 

length (T) and the frequency bandwidth (B) should be 

large enough. The class of asymptotic signals assure that 

the distribution of energy through the bandwidth B and 

the duration T of the modeled signal is significant [19].  

 

3. RESULTS AND DISCUSSION 

3.1. Data  

3.1.1 Simulated data 

A 3-dimensional MVAR(2)-process was simulated with 

two time-variant parameters, namely, a step function and 

a positive triangular function. This process has previously 

been used to evaluate  non-stationary directed interactions 

in multivariate neural data [20]. 

 

 

       is fixed to 0.2 and L is equal to 10000. Figure 1 

illustrates the directed graph of the model with time-

varying interactions between two channels. In general, 

directed graphs are utilized to depict the relationships in 

multichannel systems. 

 

 
Figure 1. The directed graph shows the interactions 

between channels, adapted from [19].  

3.1.2 Newborn EEG data 

Five monopolar channels (O1, O2, P3, P4, Cz) out of the 

14 recorded according to the 10-20 standard [21] 

modified for newborns were selected from a newborn 

EEG dataset to investigate the time-varying 

interhemispheric and intrahemispheric interactions during 

an EEG seizure period. The data was recorded using a 20-

channel Medelec Profile system (Medelec, Oxford 

Instruments, Old Woking, UK) at 256 Hz sampling rate 

and marked by a pediatric neurologist from the Royal 

Children‟s Hospital, Brisbane, Australia. Figure 2 shows 

the 10-20 standard map for a 20-channel EEG recorder. 

 
Figure 2. The 10-20 standard map for a 20-channel 

EEG recorder (provided from: 

http://faculty.washington.edu/chudler/1020.html). 

 

3.2. Results 

3.2.1 Simulated data 

Time-variant estimated MVAR parameters for the 

simulated data are represented in figure 3. In each panel 

of the figure, the x-axis represents time in terms of data 

samples and the y-axis shows the parameter values 

estimated over samples. Three under-analyzed parameters 

are shown by solid arrows.  
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Figure 3. Time-varying MVAR parameter estimation 

using AAR algorithm (18 parameters) 

 
(a) 

 
(b) 

Figure 4. Adaptive DTF (panel a) and PDC (panel b) 

for the simulated model using the Kalman filtering 

approach. The x-axis represents normalized frequency 

([0 0.5] corresponding to [0 Fs/2]) and the y–axis 

represents time direction in terms of data samples. 

Figure 4 shows the most significant values of both 

adaptive PDC and TDF measures at 99% level of 

significance after applying the surrogate data method. 

The adaptive PDC seems to show a better representation 

of the connectivity between channels than the adaptive 

DTF as the former correctly shows that there is no direct 

coupling from channel 3 to channel 1 (          ), 

while there is a clear pattern in           . This result is 

consistent with previous comparative studies [5, 9, 22].  

The measures were also investigated by using a short-

time implementation with a Hamming window of 256 

samples length and 25% overlap. Figure 5 illustrates ST-

DTF and ST-PDC measures after applying the surrogate 

data method for the simulated data.  

 

 
(a) 

 
(b) 

Figure 5. Short-time DTF (panel a) and PDC (panel b) 

for the simulated model. The x-axis represents 

normalized frequency ([0 0.5] corresponding to [0 Fs/2]) 

and the y–axis represents time direction in terms of data 

samples. 

 

In contrast to figure 4, the image resolution of the short-

time measures in figure 5 is lower. This arises from the 

nature of the windowing approach. In other words, 

smoothness and continuity of the adaptive measures is 

degraded in the short-time representations. Also, some 

faint patterns emerged in those short-time planes where 

there are no interactions (e.g.,                  . These 

patterns are not seen in the adaptive-based time-

frequency representation. Nonetheless, the window-based 

approach has been able to track model parameters more 

accurately than the AAR method. The peak of the 

triangular function        is located at the correct time 

sample in figure 5, while it appears in figure 4 with a 

relatively large delay. Also, figure 5 shows a sharp edge 

for the step function       , while a smoothed edge can be 

observed for this parameter in figure 4.  

 

3.2.2 Newborn EEG data 

Considering the prominences of the short-time measures 

in terms of their ability to track fast parameter changes 

comparing with the AAR based method, ST-DTF and ST-

PDC measures were applied for the newborn EEG 

analysis in this study. In figure 6, ST-PDC and ST-DTF 

values extracted from the data are presented. The same 

settings used with simulated data (window length 256, 

25% overlap) were adopted here.  
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 (b) 
Figure 6. Short-time DTF (panel a) and PDC (panel b) 
of the newborn EEG data. The x-axis spans frequencies 

from zero to the Nyquist rate (Fs/2) and the y–axis 
represents time direction in seconds.  

Based on a visual inspection of the plots for all pairs of 
channels, two directed graphs can be suggested as the 
model of the seizure propagation depicted in figure 7. 
 

 
Figure 7. Suggested directed graphs based on ST-DTF 

(left) and ST-PDC (right) measures for the newborn 
EEG data. Solid arrows show stronger relations (i.e., 
considerable regions in the time-frequency plain with 

high values), while dashed ones reflect weak 
interactions (i.e., sparse regions with medial values in 

the time-frequency plane). 

 

3.3. Discussion and Interpretation of the Results 

The results on the simulated data show that the time-
varying PDC is a better representation of the connectivity 
between channels than the time-varying DTF; a result 
compatible with the findings of previous comparative 
studies [5, 20, 22]. These results imply that the Adaptive 
AR modeling algorithm discussed in [13] is not capable 
of tracking fast changes in the MVAR parameters, but 
rather gives a rough view of the inter-relations between 
channels. In contrast, the windowing (short-time) 
approach reflects the parameter changes accurately, but 
the image resolution (i.e., time-frequency details) is 
degraded. However, the latter method is preferred to the 
former, as the timing is of greater significance in EEG 
seizure analysis.  
 

Based on the suggested directed graphs of ST-DTF 
and ST-PDC in figure 7, an irregular pattern can be 
observed during the seizure interval between two 
hemispheres in the posterior areas. In other words, no 
individual electrode can be determined as the source of 
the seizure. Nonetheless, ST-DTF shows more significant 
influence of the Cz electrode (see figure 2) comparing 
with the others for this particular infant. ST-PDC doesn’t 
reflect any significant direct interaction between left and 
right hemispheres (P3 and P4), i.e., the hemispheres act as 
relatively independent. But, ST-DTF shows a unilateral 
relationship from the right hemisphere to the left which 
may imply that there is a relationship between the two 
sites.  

Further improvement of the time-varying versions of 
the connectivity criteria can be achieved by adopting AR 
modeling algorithms with improved parameter tracking 
ability. It is of high importance for seizure monitoring, as 
the parameters of the brain dynamical system may change 
rapidly during the seizure [23].  

This work can be extended by investigating the 
analogy between the standard non-parametric signal 
processing formulation as a direction of arrival estimation 
problem and the approach presented in this paper. 

 
 

4. CONCLUSION 

Results show the advantage of using the PDC measure in 
terms of the ability of tracking fast parameter changes 
compared to the DTF measure using the simulated data. 
This finding is in agreement with previous studies [5, 20, 
22]. Also, the results imply that the windowing (short-
time) based PDC is more appropriate for the newborn 
EEG analysis, as the Kalman filter based AR estimation 
method discussed in [13] has limitations in tracking fast 
parameter changes. Thus, short-time PDC can be 
considered a good candidate (among the four methods: 
ST-DTF, ST-PDC, adaptive-DTF, adaptive-PDC) to 
extract fast changing functional neural connectivity 
between channels in the newborn EEG including epileptic 
signatures. This ability is potentially valuable for 
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investigation of seizure EEG abnormalities in the
newborn, as the dynamics of the brain changes rapidly
during seizures [23].

The findings also suggest that further improvements in
the estimation of the functional connectivity between
cortical brain regions could be obtained by investigating a
non-parametric approach that is based on the use of a
selected quadratic TFD [19] and instantaneous frequency
estimation [24]. Such an approach may lead to a
refinement due to the well-known limitations of the short-
time windowing approach (which may smooth fast IF
variations) and AR modeling (which may result in either
spurious or missing peaks, depending on model order
selection).
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